860 resultados para Evolutionary particle swarm optimization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O cálculo do equilíbrio de fases é um problema de grande importância em processos da engenharia, como, por exemplo, na separação por destilação, em processos de extração e simulação da recuperação terciária de petróleo, entre outros. Mas para resolvê-lo é aconselhável que se estude a priori a estabilidade termodinâmica do sistema, a qual consiste em determinar se uma dada mistura se apresenta em uma ou mais fases. Tal problema pode ser abordado como um problema de otimização, conhecido como a minimização da função distância do plano tangente à energia livre de Gibbs molar, onde modelos termodinâmicos, de natureza não convexa e não linear, são utilizados para descrevê-lo. Esse fato tem motivado um grande interesse em técnicas de otimização robustas e eficientes para a resolução de problemas relacionados com a termodinâmica do equilíbrio de fases. Como tem sido ressaltado na literatura, para proporcionar uma completa predição do equilíbrio de fases, faz-se necessário não apenas a determinação do minimizador global da função objetivo do teste de estabilidade, mas também a obtenção de todos os seus pontos estacionários. Assim, o desenvolvimento de metodologias para essa tarefa desafiadora tem se tornado uma nova área de pesquisa da otimização global aplicada à termodinâmica do equilíbrio, com interesses comuns na engenharia química e na engenharia do petróleo. O foco do presente trabalho é uma nova metodologia para resolver o problema do teste de estabilidade. Para isso, usa-se o chamado método do conjunto gerador para realizar buscas do tipo local em uma rede de pontos previamente gerada por buscas globais efetuadas com uma metaheurística populacional, no caso o método do enxame de partículas.Para se obter mais de um ponto estacionário, minimizam-se funções de mérito polarizadas, cujos pólos são os pontos previamente encontrados. A metodologia proposta foi testada na análise de quatorze misturas polares previamente consideradas na literatura. Os resultados mostraram que o método proposto é robusto e eficiente a ponto de encontrar, além do minimizador global, todos os pontos estacionários apontados previamente na literatura, sendo também capaz de detectar, em duas misturas ternárias estudadas, pontos estacionários não obtidos pelo chamado método de análise intervalar, uma técnica confiável e muito difundida na literatura. A análise do teste de estabilidade pela simples utilização do método do enxame de partículas associado à técnica de polarização mencionada acima, para a obtenção de mais de um ponto estacionário (sem a busca local feita pelo método do conjunto gerador em uma dada rede de pontos), constitui outra metodologia para a resolução do problema de interesse. Essa utilização é uma novidade secundária deste trabalho. Tal metodologia simplificada exibiu também uma grande robustez, sendo capaz de encontrar todos os pontos estacionários pesquisados. No entanto, quando comparada com a abordagem mais geral proposta aqui, observou-se que tal simplificação pode, em alguns casos onde a função de mérito apresenta uma geometria mais complexa, consumir um tempo de máquina relativamente grande, dessa forma é menos eficiente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As one of the most competitive approaches to multi-objective optimization, evolutionary algorithms have been shown to obtain very good results for many realworld multi-objective problems. One of the issues that can affect the performance of these algorithms is the uncertainty in the quality of the solutions which is usually represented with the noise in the objective values. Therefore, handling noisy objectives in evolutionary multi-objective optimization algorithms becomes very important and is gaining more attention in recent years. In this paper we present ?-degree Pareto dominance relation for ordering the solutions in multi-objective optimization when the values of the objective functions are given as intervals. Based on this dominance relation, we propose an adaptation of the non-dominated sorting algorithm for ranking the solutions. This ranking method is then used in a standardmulti-objective evolutionary algorithm and a recently proposed novel multi-objective estimation of distribution algorithm based on joint variable-objective probabilistic modeling, and applied to a set of multi-objective problems with different levels of independent noise. The experimental results show that the use of the proposed method for solution ranking allows to approximate Pareto sets which are considerably better than those obtained when using the dominance probability-based ranking method, which is one of the main methods for noise handling in multi-objective optimization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-alternating-gas (WAG) is an enhanced oil recovery method combining the improved macroscopic sweep of water flooding with the improved microscopic displacement of gas injection. The optimal design of the WAG parameters is usually based on numerical reservoir simulation via trial and error, limited by the reservoir engineer’s availability. Employing optimisation techniques can guide the simulation runs and reduce the number of function evaluations. In this study, robust evolutionary algorithms are utilized to optimise hydrocarbon WAG performance in the E-segment of the Norne field. The first objective function is selected to be the net present value (NPV) and two global semi-random search strategies, a genetic algorithm (GA) and particle swarm optimisation (PSO) are tested on different case studies with different numbers of controlling variables which are sampled from the set of water and gas injection rates, bottom-hole pressures of the oil production wells, cycle ratio, cycle time, the composition of the injected hydrocarbon gas (miscible/immiscible WAG) and the total WAG period. In progressive experiments, the number of decision-making variables is increased, increasing the problem complexity while potentially improving the efficacy of the WAG process. The second objective function is selected to be the incremental recovery factor (IRF) within a fixed total WAG simulation time and it is optimised using the same optimisation algorithms. The results from the two optimisation techniques are analyzed and their performance, convergence speed and the quality of the optimal solutions found by the algorithms in multiple trials are compared for each experiment. The distinctions between the optimal WAG parameters resulting from NPV and oil recovery optimisation are also examined. This is the first known work optimising over this complete set of WAG variables. The first use of PSO to optimise a WAG project at the field scale is also illustrated. Compared to the reference cases, the best overall values of the objective functions found by GA and PSO were 13.8% and 14.2% higher, respectively, if NPV is optimised over all the above variables, and 14.2% and 16.2% higher, respectively, if IRF is optimised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolutionary algorithms alone cannot solve optimization problems very efficiently since there are many random (not very rational) decisions in these algorithms. Combination of evolutionary algorithms and other techniques have been proven to be an efficient optimization methodology. In this talk, I will explain the basic ideas of our three algorithms along this line (1): Orthogonal genetic algorithm which treats crossover/mutation as an experimental design problem, (2) Multiobjective evolutionary algorithm based on decomposition (MOEA/D) which uses decomposition techniques from traditional mathematical programming in multiobjective optimization evolutionary algorithm, and (3) Regular model based multiobjective estimation of distribution algorithms (RM-MEDA) which uses the regular property and machine learning methods for improving multiobjective evolutionary algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two lecture notes describe recent developments of evolutionary multi objective optimization (MO) techniques in detail and their advantages and drawbacks compared to traditional deterministic optimisers. The role of Game Strategies (GS), such as Pareto, Nash or Stackelberg games as companions or pre-conditioners of Multi objective Optimizers is presented and discussed on simple mathematical functions in Part I , as well as their implementations on simple aeronautical model optimisation problems on the computer using a friendly design framework in Part II. Real life (robust) design applications dealing with UAVs systems or Civil Aircraft and using the EAs and Game Strategies combined material of Part I & Part II are solved and discussed in Part III providing the designer new compromised solutions useful to digital aircraft design and manufacturing. Many details related to Lectures notes Part I, Part II and Part III can be found by the reader in [68].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on optimisation algorithms inspired by swarm intelligence for satellite image classification from high resolution satellite multi- spectral images. Amongst the multiple benefits and uses of remote sensing, one of the most important has been its use in solving the problem of land cover mapping. As the frontiers of space technology advance, the knowledge derived from the satellite data has also grown in sophistication. Image classification forms the core of the solution to the land cover mapping problem. No single classifier can prove to satisfactorily classify all the basic land cover classes of an urban region. In both supervised and unsupervised classification methods, the evolutionary algorithms are not exploited to their full potential. This work tackles the land map covering by Ant Colony Optimisation (ACO) and Particle Swarm Optimisation (PSO) which are arguably the most popular algorithms in this category. We present the results of classification techniques using swarm intelligence for the problem of land cover mapping for an urban region. The high resolution Quick-bird data has been used for the experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many optimal control problems are characterized by their multiple performance measures that are often noncommensurable and competing with each other. The presence of multiple objectives in a problem usually give rise to a set of optimal solutions, largely known as Pareto-optimal solutions. Evolutionary algorithms have been recognized to be well suited for multi-objective optimization because of their capability to evolve a set of nondominated solutions distributed along the Pareto front. This has led to the development of many evolutionary multi-objective optimization algorithms among which Nondominated Sorting Genetic Algorithm (NSGA and its enhanced version NSGA-II) has been found effective in solving a wide variety of problems. Recently, we reported a genetic algorithm based technique for solving dynamic single-objective optimization problems, with single as well as multiple control variables, that appear in fed-batch bioreactor applications. The purpose of this study is to extend this methodology for solution of multi-objective optimal control problems under the framework of NSGA-II. The applicability of the technique is illustrated by solving two optimal control problems, taken from literature, which have usually been solved by several methods as single-objective dynamic optimization problems. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a glowworm metaphor based distributed algorithm that enables a collection of minimalist mobile robots to split into subgroups, exhibit simultaneous taxis-behavior towards, and rendezvous at multiple radiation sources such as nuclear/hazardous chemical spills and fire-origins in a fire calamity. The algorithm is based on a glowworm swarm optimization (GSO) technique that finds multiple optima of multimodal functions. The algorithm is in the same spirit as the ant-colony optimization (ACO) algorithms, but with several significant differences. The agents in the glowworm algorithm carry a luminescence quantity called luciferin along with them. Agents are thought of as glowworms that emit a light whose intensity is proportional to the associated luciferin. The key feature that is responsible for the working of the algorithm is the use of an adaptive local-decision domain, which we use effectively to detect the multiple source locations of interest. The glowworms have a finite sensor range which defines a hard limit on the local-decision domain used to compute their movements. Extensive simulations validate the feasibility of applying the glowworm algorithm to the problem of multiple source localization. We build four wheeled robots called glowworms to conduct our experiments. We use a preliminary experiment to demonstrate the basic behavioral primitives that enable each glowworm to exhibit taxis behavior towards source locations and later demonstrate a sound localization task using a set of four glowworms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

射频识别技术(Radio Frequency Identification, RFID)作为采集与处理信息的高新技术和信息化标准的基础,被列为本世纪十大重要技术之一。但是,RFID技术的大规模实际应用仍处于探索阶段,RFID系统的应用基础技术还存在着大量尚未解决的关键问题,其中RFID系统优化是RFID技术研究和应用的重要课题。由于RFID系统本身的动态性和不确定性, RFID系统优化面对的一般是非线性、多目标、大规模的复杂优化问题,传统的数学优化算法在处理这些问题时,存在困难。为此,研究新的优化算法成为RFID技术实际应用和理论研究中必须解决的课题。 智能计算方法是求解复杂RFID系统优化问题的一种可供选择的算法。智能计算作为一个新兴领域,其发展已引起了多个学科领域研究人员的关注,目前已经成为人工智能、经济、社会、生物等交叉学科的研究热点和前沿领域。智能计算的各类算法已在传统NP问题求解及诸多实际应用领域中展现出其优异的性能和巨大的发展潜力。 本文旨在对RFID系统的各种优化问题进行深入研究和探讨,面向RFID技术的实际应用需求构建其优化模型,并基于智能计算思想设计能够有效求解这些复杂模型的新型智能优化算法。具体研究内容包括: 首先,进行了RFID读写器网络的调度问题研究。在深入分析RFID网络中读写器冲突类型和成因的基础上,考虑RFID网络中的读写器冲突约束,以最小化系统中的频道数量、时隙分配以及总处理时间建立了RFID读写器网络调度的数学优化模型。从生物学的角度出发提出基于生态捕食模型的改进PSO算法(Particle Swarm Optimizer based on Predator-prey Coevolution, PSOPC),在一定程度上解决了PSO算法在迭代后期随着多样性丧失而陷入局部最优的缺点。应用PSOPC设计了求解RFID读写器网络调度模型的智能求解算法,分别给出算法的求解框架、关键步骤的实现机制。通过在不同规模的RFID读写器网络上进行实例仿真,验证了算法的有效性和模型的正确性。 其次,进行了基于菌群自适应觅食算法RFID网络规划问题的研究。考虑RFID系统在不同应用环境下的系统需求,建立了RFID网络规化的数学模型,其目标函数分别为:RFID网络标签覆盖率的最大化目标函数、RFID读写器冲突的最小化目标函数、RFID网络运行的经济效益最大化目标函数、RFID网络运行的负载平衡目标函数以及同时考虑全局目标的混合目标函数。将自然界生物觅食所采用的自适应搜索策略与细菌的趋化行为和群体感应机制相集成,提出了适合求解复杂RFID网络规划问题的菌群自适应觅食算法(Adaptive Bacterial Foraging Optimization, ABFO)。通过仿真实验基于ABFO算法分别对RFID网络规划模型中的五个目标函数进行了实例求解和分析,测试结果与标准PSO算法和遗传算法进行了比较分析。 再次,进行了基于系统智能方法的RFID网络规划分布式决策模型研究。采用分布式决策的思想建立了RFID网络规划的层次模型,在一定程度上缓解、分散了RFID网络规划问题的复杂性,以解决具有混合变量(包括离散变量和连续变量)的多目标RFID网络规划问题。针对层次模型求解的复杂性,以复杂适应系统理论为指导思想设计了一种新型系统智能优化算法对RFID网络规划的层次模型进行求解。系统智能算法将群体智能中的单层群体系统概念扩展为多层涌现系统,仿真实验表明新提出的算法显著提高了智能计算方法的寻优能力,以及算法的适应性、鲁棒性和平衡性等性能。 最后,进行了RFID网络目标跟踪系统中的数据融合研究。以基于RFID技术的目标定位与跟踪系统为应用背景,提出了基于模糊聚类方法的多RFID读写器数据融合模型框架。通过深入分析蜜蜂采蜜的基本生物学规律,对蜜蜂的个体行为及群体行为进行模拟,提出了一类新型群体智能优化算法-蜂群优化算法(Bee Swarm Optimization, BSO),并将BSO算法嵌入RFID目标定位跟踪系统,作为其模糊聚类的基本算法。仿真研究表明,提出的融合模型能够有效的过滤读写器对跟踪目标的错误监测数据,显著提高目标定位与跟踪的精度。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimal design of a power electronics module isolation substrate is assessed using a combination of finite element structural mechanics analysis and response surface optimisation technique. Primary failure modes in power electronics modules include the loss of structural integrity in the ceramic substrate materials due to stresses induced through thermal cycling. Analysis of the influence of ceramic substrate design parameters is undertaken using a design of experiments approach. Finite element analysis is used to determine the stress distribution for each design, and the results are used to construct a quadratic response surface function. A particle swarm optimisation algorithm is then used to determine the optimal substrate design. Analysis of response surface function gradients is used to perform sensitivity analysis and develop isolation substrate design rules. The influence of design uncertainties introduced through manufacturing tolerances is assessed using a Monte-Carlo algorithm, resulting in a stress distribution histogram. The probability of failure caused by the violation of design constraints has been analyzed. Six geometric design parameters are considered in this work and the most important design parameters have been identified. Overall analysis results can be used to enhance the design and reliability of the component.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the production process of polyethylene terephthalate (PET) bottles, the initial temperature of preforms plays a central role on the final thickness, intensity and other structural properties of the bottles. Also, the difference between inside and outside temperature profiles could make a significant impact on the final product quality. The preforms are preheated by infrared heating oven system which is often an open loop system and relies heavily on trial and error approach to adjust the lamp power settings. In this paper, a radial basis function (RBF) neural network model, optimized by a two-stage selection (TSS) algorithm combined with partial swarm optimization (PSO), is developed to model the nonlinear relations between the lamp power settings and the output temperature profile of PET bottles. Then an improved PSO method for lamp setting adjustment using the above model is presented. Simulation results based on experimental data confirm the effectiveness of the modelling and optimization method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a brief history of the western music: from its genesis to serialism and the Darmstadt school. Also some mathematical aspects of music are then presented and confronted with music as a form of art. The question is, are these two distinct aspects compatible? Can computers be of real help in automatic composition? The more appealing algorithmic approach is evolutionary computation as it offers creativity potential. Therefore, the Evolutionary Algorithms are then introduced and some results of GAs and GPs application to music generation are analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit wird eine gemeinsame Optimierung der Hybrid-Betriebsstrategie und des Verhaltens des Verbrennungsmotors vorgestellt. Die Übernahme von den im Steuergerät verwendeten Funktionsmodulen in die Simulationsumgebung für Fahrzeuglängsdynamik stellt eine effiziente Applikationsmöglichkeit der Originalparametrierung dar. Gleichzeitig ist es notwendig, das Verhalten des Verbrennungsmotors derart nachzubilden, dass das stationäre und das dynamische Verhalten, inklusive aller relevanten Einflussmöglichkeiten, wiedergegeben werden kann. Das entwickelte Werkzeug zur Übertragung der in Ascet definierten Steurgerätefunktionen in die Simulink-Simulationsumgebung ermöglicht nicht nur die Simulation der relevanten Funktionsmodule, sondern es erfüllt auch weitere wichtige Eigenschaften. Eine erhöhte Flexibilität bezüglich der Daten- und Funktionsstandänderungen, sowie die Parametrierbarkeit der Funktionsmodule sind Verbesserungen die an dieser Stelle zu nennen sind. Bei der Modellierung des stationären Systemverhaltens des Verbrennungsmotors erfolgt der Einsatz von künstlichen neuronalen Netzen. Die Auswahl der optimalen Neuronenanzahl erfolgt durch die Betrachtung des SSE für die Trainings- und die Verifikationsdaten. Falls notwendig, wird zur Sicherstellung der angestrebten Modellqualität, das Interpolationsverhalten durch Hinzunahme von Gauß-Prozess-Modellen verbessert. Mit den Gauß-Prozess-Modellen werden hierbei zusätzliche Stützpunkte erzeugt und mit einer verminderten Priorität in die Modellierung eingebunden. Für die Modellierung des dynamischen Systemverhaltens werden lineare Übertragungsfunktionen verwendet. Bei der Minimierung der Abweichung zwischen dem Modellausgang und den Messergebnissen wird zusätzlich zum SSE das 2σ-Intervall der relativen Fehlerverteilung betrachtet. Die Implementierung der Steuergerätefunktionsmodule und der erstellten Steller-Sensor-Streckenmodelle in der Simulationsumgebung für Fahrzeuglängsdynamik führt zum Anstieg der Simulationszeit und einer Vergrößerung des Parameterraums. Das aus Regelungstechnik bekannte Verfahren der Gütevektoroptimierung trägt entscheidend zu einer systematischen Betrachtung und Optimierung der Zielgrößen bei. Das Ergebnis des Verfahrens ist durch das Optimum der Paretofront der einzelnen Entwurfsspezifikationen gekennzeichnet. Die steigenden Simulationszeiten benachteiligen Minimumsuchverfahren, die eine Vielzahl an Iterationen benötigen. Um die Verwendung einer Zufallsvariablen, die maßgeblich zur Steigerung der Iterationanzahl beiträgt, zu vermeiden und gleichzeitig eine Globalisierung der Suche im Parameterraum zu ermöglichen wird die entwickelte Methode DelaunaySearch eingesetzt. Im Gegensatz zu den bekannten Algorithmen, wie die Partikelschwarmoptimierung oder die evolutionären Algorithmen, setzt die neu entwickelte Methode bei der Suche nach dem Minimum einer Kostenfunktion auf eine systematische Analyse der durchgeführten Simulationsergebnisse. Mit Hilfe der bei der Analyse gewonnenen Informationen werden Bereiche mit den bestmöglichen Voraussetzungen für ein Minimum identifiziert. Somit verzichtet das iterative Verfahren bei der Bestimmung des nächsten Iterationsschrittes auf die Verwendung einer Zufallsvariable. Als Ergebnis der Berechnungen steht ein gut gewählter Startwert für eine lokale Optimierung zur Verfügung. Aufbauend auf der Simulation der Fahrzeuglängsdynamik, der Steuergerätefunktionen und der Steller-Sensor-Streckenmodelle in einer Simulationsumgebung wird die Hybrid-Betriebsstrategie gemeinsam mit der Steuerung des Verbrennungsmotors optimiert. Mit der Entwicklung und Implementierung einer neuen Funktion wird weiterhin die Verbindung zwischen der Betriebsstrategie und der Motorsteuerung erweitert. Die vorgestellten Werkzeuge ermöglichten hierbei nicht nur einen Test der neuen Funktionalitäten, sondern auch eine Abschätzung der Verbesserungspotentiale beim Verbrauch und Abgasemissionen. Insgesamt konnte eine effiziente Testumgebung für eine gemeinsame Optimierung der Betriebsstrategie und des Verbrennungsmotorverhaltens eines Hybridfahrzeugs realisiert werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metamodels have proven be very useful when it comes to reducing the computational requirements of Evolutionary Algorithm-based optimization by acting as quick-solving surrogates for slow-solving fitness functions. The relationship between metamodel scope and objective function varies between applications, that is, in some cases the metamodel acts as a surrogate for the whole fitness function, whereas in other cases it replaces only a component of the fitness function. This paper presents a formalized qualitative process to evaluate a fitness function to determine the most suitable metamodel scope so as to increase the likelihood of calibrating a high-fidelity metamodel and hence obtain good optimization results in a reasonable amount of time. The process is applied to the risk-based optimization of water distribution systems; a very computationally-intensive problem for real-world systems. The process is validated with a simple case study (modified New York Tunnels) and the power of metamodelling is demonstrated on a real-world case study (Pacific City) with a computational speed-up of several orders of magnitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to develop an automated tool for the optimization of turbomachinery blades founded on an evolutionary strategy. This optimization scheme will serve to deal with supersonic blades cascades for application to Organic Rankine Cycle (ORC) turbines. The blade geometry is defined using parameterization techniques based on B-Splines curves, that allow to have a local control of the shape. The location in space of the control points of the B-Spline curve define the design variables of the optimization problem. In the present work, the performance of the blade shape is assessed by means of fully-turbulent flow simulations performed with a CFD package, in which a look-up table method is applied to ensure an accurate thermodynamic treatment. The solver is set along with the optimization tool to determine the optimal shape of the blade. As only blade-to-blade effects are of interest in this study, quasi-3D calculations are performed, and a single-objective evolutionary strategy is applied to the optimization. As a result, a non-intrusive tool, with no need for gradients definition, is developed. The computational cost is reduced by the use of surrogate models. A Gaussian interpolation scheme (Kriging model) is applied for the estimated n-dimensional function, and a surrogate-based local optimization strategy is proved to yield an accurate way for optimization. In particular, the present optimization scheme has been applied to the re-design of a supersonic stator cascade of an axial-flow turbine. In this design exercise very strong shock waves are generated in the rear blade suction side and shock-boundary layer interaction mechanisms occur. A significant efficiency improvement as a consequence of a more uniform flow at the blade outlet section of the stator is achieved. This is also expected to provide beneficial effects on the design of a subsequent downstream rotor. The method provides an improvement to gradient-based methods and an optimized blade geometry is easily achieved using the genetic algorithm.