458 resultados para Equacions diferencials no lineals


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we compare the results of the Gross-Pitaevskii and modified Gross-Pitaevskii equations with ab initio variational Monte Carlo calculations for Bose-Einstein condensates of atoms in axially symmetric traps. We examine both the ground state and excited states having a vortex line along the z axis at high values of the gas parameter and demonstrate an excellent agreement between the modified Gross-Pitaevskii and ab initio Monte Carlo methods, both for the ground and vortex states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Remarkable differences in the shape of the nematic-smectic-B interface in a quasi-two-dimensional geometry have been experimentally observed in three liquid crystals of very similar molecular structure, i.e., neighboring members of a homologous series. In the thermal equilibrium of the two mesophases a faceted rectanglelike shape was observed with considerably different shape anisotropies for the three homologs. Various morphologies such as dendritic, dendriticlike, and faceted shapes of the rapidly growing smectic-B germ were also observed for the three substances. Experimental results were compared with computer simulations based on the phase field model. The pattern forming behavior of a binary mixture of two homologs was also studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the evaporation of periodic arrays of initially equal droplets in two-dimensional systems with open (absorbing) boundaries. Our study is based on the numerical solution of the Cahn-Hilliard equation. We show that due to cooperative effects the droplets which are further from the boundary may evaporate earlier than those in the boundary¿s vicinity. The time evolution of the overall amount of matter in the system is also studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the exact ground state of the two-dimensional random-field Ising model as a function of both the external applied field B and the standard deviation ¿ of the Gaussian random-field distribution. The equilibrium evolution of the magnetization consists in a sequence of discrete jumps. These are very similar to the avalanche behavior found in the out-of-equilibrium version of the same model with local relaxation dynamics. We compare the statistical distributions of magnetization jumps and find that both exhibit power-law behavior for the same value of ¿. The corresponding exponents are compared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that time-dependent couplings may lead to nontrivial scaling properties of the surface fluctuations of the asymptotic regime in nonequilibrium kinetic roughening models. Three typical situations are studied. In the case of a crossover between two different rough regimes, the time-dependent coupling may result in anomalous scaling for scales above the crossover length. In a different setting, for a crossover from a rough to either a flat or damping regime, the time-dependent crossover length may conspire to produce a rough surface, although the most relevant term tends to flatten the surface. In addition, our analysis sheds light into an existing debate in the problem of spontaneous imbibition, where time-dependent couplings naturally arise in theoretical models and experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of side-branching in solidifying dendrites in a regime of large values of the Peclet number is studied by means of a phase-field model. We have compared our numerical results with experiments of the preceding paper and we obtain good qualitative agreement. The growth rate of each side branch shows a power-law behavior from the early stages of its life. From their birth, branches which finally succeed in the competition process of side-branching development have a greater growth exponent than branches which are stopped. Coarsening of branches is entirely defined by their geometrical position relative to their dominant neighbors. The winner branches escape from the diffusive field of the main dendrite and become independent dendrites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have systematically analyzed six different reticular models with quenched disorder and no thermal fluctuations exhibiting a field-driven first-order phase transition. We have studied the nonequilibrium transition, appearing when varying the amount of disorder, characterized by the change from a discontinuous hysteresis cycle (with one or more large avalanches) to a smooth one (with only tiny avalanches). We have computed critical exponents using finite size scaling techniques and shown that they are consistent with universal values depending only on the space dimensionality d.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss intrinsic noise effects in stochastic multiplicative-noise partial differential equations, which are qualitatively independent of the noise interpretation (Itô vs Stratonovich), in particular in the context of noise-induced ordering phase transitions. We study a model which, contrary to all cases known so far, exhibits such ordering transitions when the noise is interpreted not only according to Stratonovich, but also to Itô. The main feature of this model is the absence of a linear instability at the transition point. The dynamical properties of the resulting noise-induced growth processes are studied and compared in the two interpretations and with a reference Ginzburg-Landau-type model. A detailed discussion of a different numerical algorithm valid for both interpretations is also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the problem of the partition of a system of initial size V into a sequence of fragments s1,s2,s3 . . . . By assuming a scaling hypothesis for the probability p(s;V) of obtaining a fragment of a given size, we deduce that the final distribution of fragment sizes exhibits power-law behavior. This minimal model is useful to understanding the distribution of avalanche sizes in first-order phase transitions at low temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We deal with the hysteretic behavior of partial cycles in the two¿phase region associated with the martensitic transformation of shape¿memory alloys. We consider the problem from a thermodynamic point of view and adopt a local equilibrium formalism, based on the idea of thermoelastic balance, from which a formal writing follows a state equation for the material in terms of its temperature T, external applied stress ¿, and transformed volume fraction x. To describe the striking memory properties exhibited by partial transformation cycles, state variables (x,¿,T) corresponding to the current state of the system have to be supplemented with variables (x,¿,T) corresponding to points where the transformation control parameter (¿¿ and/or T) had reached a maximum or a minimum in the previous thermodynamic history of the system. We restrict our study to simple partial cycles resulting from a single maximum or minimum of the control parameter. Several common features displayed by such partial cycles and repeatedly observed in experiments lead to a set of analytic restrictions, listed explicitly in the paper, to be verified by the dissipative term of the state equation, responsible for hysteresis. Finally, using calorimetric data of thermally induced partial cycles through the martensitic transformation in a Cu¿Zn¿Al alloy, we have fitted a given functional form of the dissipative term consistent with the analytic restrictions mentioned above.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The possibility of local elastic instabilities is considered in a first¿order structural phase transition, typically a thermoelastic martensitic transformation, with associated interfacial and volumic strain energy. They appear, for instance, as the result of shape change accommodation by simultaneous growth of different crystallographic variants. The treatment is phenomenological and deals with growth in both thermoelastic equilibrium and in nonequilibrium conditions produced by the elastic instability. Scaling of the transformed fraction curves against temperature is predicted only in the case of purely thermoelastic growth. The role of the transformation latent heat on the relaxation kinetics is also considered, and it is shown that it tends to increase the characteristic relaxation times as adiabatic conditions are approached, by keeping the system closer to a constant temperature. The analysis also reveals that the energy dissipated in the relaxation process has a double origin: release of elastic energy Wi and entropy production Si. The latter is shown to depend on both temperature rate and thermal conduction in the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stress-strain trajectories associated with pseudoelastic behavior of a Cu¿19.4 Zn¿13.1 Al (at.%) single crystal at room temperature have been determined experimentally. For a constant cross-head speed the trajectories and the associated hysteresis behavior are perfectly reproducible; the trajectories exhibit memory properties, dependent only on the values of return points, where transformation direction is reverted. An adapted version of the Preisach model for hysteresis has been implemented to predict the observed trajectories, using a set of experimental first¿order reversal curves as input data. Explicit formulas have been derived giving all trajectories in terms of this data set, with no adjustable parameters. Comparison between experimental and calculated trajectories shows a much better agreement for descending than for ascending paths, an indication of a dissymmetry between the dissipation mechanisms operative in forward and reverse directions of martensitic transformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we develop the canonical formalism for constrained systems with a finite number of degrees of freedom by making use of the PoincarCartan integral invariant method. A set of variables suitable for the reduction to the physical ones can be obtained by means of a canonical transformation. From the invariance of the PoincarCartan integral under canonical transformations we get the form of the equations of motion for the physical variables of the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study nonstationary non-Markovian processes defined by Langevin-type stochastic differential equations with an OrnsteinUhlenbeck driving force. We concentrate on the long time limit of the dynamical evolution. We derive an approximate equation for the correlation function of a nonlinear nonstationary non-Markovian process, and we discuss its consequences. Non-Markovicity can introduce a dependence on noise parameters in the dynamics of the correlation function in cases in which it becomes independent of these parameters in the Markovian limit. Several examples are discussed in which the relaxation time increases with respect to the Markovian limit. For a Brownian harmonic oscillator with fluctuating frequency, the non-Markovicity of the process decreases the domain of stability of the system, and it can change an infradamped evolution into an overdamped one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We extend the HamiltonJacobi formulation to constrained dynamical systems. The discussion covers both the case of first-class constraints alone and that of first- and second-class constraints combined. The HamiltonDirac equations are recovered as characteristic of the system of partial differential equations satisfied by the HamiltonJacobi function.