977 resultados para Endocytic Membrane Transport
Resumo:
Many Gram-negative, cold-adapted bacteria from the Antarctic environment produce large amounts of extracellular matter with potential biotechnological applications. Transmission electron microscopy (TEM) analysis after high-pressure freezing and freeze substitution (HPF-FS) showed that this extracellular matter is structurally complex, appearing around cells as a netlike mesh, and composed of an exopolymeric substance (EPS) containing large numbers of outer membrane vesicles (OMVs). Isolation, purification and protein profiling via 1D SDS-PAGE confirmed the outer membrane origin of these Antarctic bacteria OMVs. In an initial attempt to elucidate the role of OMVs in cold-adapted strains of Gram-negative bacteria, a proteomic analysis demonstrated that they were highly enriched in outer membrane proteins and periplasmic proteins associated with nutrient processing and transport, suggesting that the OMVs may be involved in nutrient sensing and bacterial survival. OMVs from Gram-negative bacteria are known to play a role in lateral DNA transfer, but the presence of DNA in these vesicles has remained difficult to explain. A structural study of Shewanella vesiculosa M7T using TEM and Cryo-TEM revealed that this Antarctic Gram-negative bacterium naturally releases conventional one-bilayer OMVs, together with a more complex type of OMV, previously undescribed, which on formation drags along inner membrane and cytoplasmic content and can therefore also entrap DNA.
Resumo:
This study investigated the treatment of a liquid radioactive waste containing uranium (235U + 238U) using nanofiltration membranes. The membranes were immersed in the waste for 24-5000 h, and their transport properties were evaluated before and after the immersion. Surface of the membranes changed after immersion in the waste. The SW5000 h specimen lost its coating layer of polyvinyl alcohol, and its rejection of sulfate ions and uranium decreased by about 35% and 30%, respectively. After immersion in the waste, the polyamide selective layer of the membranes became less thermally stable than that before immersion.
Resumo:
Reconstitution of membrane proteins into lipid bilayers is a powerful tool to analyze functional as well as structural areas of membrane protein research. First, the proper incorporation of a purified membrane protein into closed lipid vesicles, to produce proteoliposomes, allows the investigation of transport and/or catalytic properties of any membrane protein without interference by other membrane components. Second, the incorporation of a large amount of membrane proteins into lipid bilayers to grow crystals confined to two dimensions has recently opened a new way to solve their structure at high resolution using electron crystallography. However, reconstitution of membrane proteins into functional proteoliposomes or 2-D crystallization has been an empirical domain, which has been viewed for a long time more like "black magic" than science. Nevertheless, in the last ten years, important progress has been made in acquiring knowledge of lipid-protein-detergent interactions and has permitted to build upon a set of basic principles that has limited the empirical approach of reconstitution experiments. Reconstitution strategies have been improved and new strategies have been developed, facilitating the success rate of proteoliposome formation and 2-D crystallization. This review deals with the various strategies available to obtain proteoliposomes and 2-D crystals from detergent-solubilized proteins. It gives an overview of the methods that have been applied, which may be of help for reconstituting more proteins into lipid bilayers in a form suitable for functional studies at the molecular level and for high-resolution structural analysis.
Resumo:
Mitochondrial ion transport, oxidative phosphorylation, redox balance, and physical integrity are key factors in tissue survival following potentially damaging conditions such as ischemia/reperfusion. Recent research has demonstrated that pharmacologically activated inner mitochondrial membrane ATP-sensitive K+ channels (mitoK ATP) are strongly cardioprotective under these conditions. Furthermore, mitoK ATP are physiologically activated during ischemic preconditioning, a procedure which protects against ischemic damage. In this review, we discuss mechanisms by which mitoK ATP may be activated during preconditioning and the mitochondrial and cellular consequences of this activation, focusing on end-effects which may promote ischemic protection. These effects include decreased loss of tissue ATP through reverse activity of ATP synthase due to increased mitochondrial matrix volumes and lower transport of adenine nucleotides into the matrix. MitoK ATP also decreases the release of mitochondrial reactive oxygen species by promoting mild uncoupling in concert with K+/H+ exchange. Finally, mitoK ATP activity may inhibit mitochondrial Ca2+ uptake during ischemia, which, together with decreased reactive oxygen release, can prevent mitochondrial permeability transition, loss of organelle function, and loss of physical integrity. We discuss how mitochondrial redox status, K+ transport, Ca2+ transport, and permeability transitions are interrelated during ischemia/reperfusion and are determinant factors regarding the extent of tissue damage.
Resumo:
Enveloped viruses always gain entry into the cytoplasm by fusion of their lipid envelope with a cell membrane. Some enveloped viruses fuse directly with the host cell plasma membrane after virus binding to the cell receptor. Other enveloped viruses enter the cells by the endocytic pathway, and fusion depends on the acidification of the endosomal compartment. In both cases, virus-induced membrane fusion is triggered by conformational changes in viral envelope glycoproteins. Two different classes of viral fusion proteins have been described on the basis of their molecular architecture. Several structural data permitted the elucidation of the mechanisms of membrane fusion mediated by class I and class II fusion proteins. In this article, we review a number of results obtained by our laboratory and by others that suggest that the mechanisms involved in rhabdovirus fusion are different from those used by the two well-studied classes of viral glycoproteins. We focus our discussion on the electrostatic nature of virus binding and interaction with membranes, especially through phosphatidylserine, and on the reversibility of the conformational changes of the rhabdovirus glycoprotein involved in fusion. Taken together, these data suggest the existence of a third class of fusion proteins and support the idea that new insights should emerge from studies of membrane fusion mediated by the G protein of rhabdoviruses. In particular, the elucidation of the three-dimensional structure of the G protein or even of the fusion peptide at different pH's might provide valuable information for understanding the fusion mechanism of this new class of fusion proteins.
Resumo:
Inorganic pyrophosphatases (PPases) are enzymes that hydrolyze pyrophosphate (PPi)which is produced as a byproduct in many important growth related processes e.g. in the biosynthesis of DNA, proteins and lipids. PPases can be either soluble or membranebound. Membrane-bound PPases (mPPases) are ion transporters that couple the energy released during PPi hydrolysis to Na+ or H+ transport. When I started the project, only three Na+-transporting mPPases were known to exist. In this study, I aimed to confirm if Na+-transport is a common function of mPPases. Furthermore, the amino acid residues responsible for determining the transporter specificity were unknown. I constructed a phylogenetic tree for mPPases and selected the representative bacterial and archaeal mPPases to be investigated. I expressed different prokaryotic mPPases in Escherichia coli, isolated these as inverted membrane vesicles and characterized their functions. In the first project I identified four new Na+-PPases, two K+-dependent H+-PPases and one K+-independent mPPase. The residues determining the transporter specificity were identified by site-directed mutagenesis. I showed that the conserved glutamate residues are important for specificity, though are not the only residues that influence it. This research clarified the ion transport specificities throughout the mPPase phylogenetic tree, and revealed that Na+ transport is a widespread function of mPPases. In addition, it became clear that the transporter specificity can be predicted from the amino acid sequence in combination with a phylogenetic analysis. In the second project, I identified a novel class of mPPases, which is capable of transporting both Na+ and H+ ions and is mainly found in bacteria of the human gastrointestinal tract. The physiological role of these novel enzymes may be to help the bacteria survive in the demanding conditions of the host. In the third project, I characterized the Chlorobium limicola Na+-PPase and found that this and related mPPases are able to transport H+ ions at subphysiological Na+ concentrations. In addition, the H+-transport activity was shown to be a common function of all studied Na+-PPases at low Na+ concentrations. I observed that mutating gate-lysine to asparagine eliminated the H+ but not the Na+ ion transport function, indicating the important role of the residue in the transport of H+. In the fourth project, I characterized the unknown and evolutionary divergent mPPase clade of the phylogenetic tree. The enzymes belonging to this clade are able to transport H+ ions and, based on their sequence, were expected to be K+- and Na+-independent. The sequences of membrane-bound PPase are usually highly conserved, but the enzymes belonging to this clade are more divergent and usually contain 100−150 extra amino acid residues compared to other known mPPases. Despite the vast sequence differences, these mPPases have the full set of important residues and, surprisingly, are regulated by Na+ and K+ ions. These enzymes are mainly of bacterial origin.
Resumo:
Lipid transport in arthropods is achieved by highly specialized lipoproteins, which resemble those described in vertebrate blood. Here we describe purification and characterization of the lipid-apolipoprotein complex, lipophorin (Lp), from adults and larvae of the cowpea weevil Callosobruchus maculatus. We also describe the Lp-mediated lipid transfer to developing oocytes. Lps were isolated from homogenates of C. maculatus larvae and adults by potassio bromide gradient and characterized with respect to physicochemical properties and lipid content. The weevil Lp (465 kDa) and larval Lp (585 kDa), with hydrated densities of 1.22 and 1.14 g/mL, contained 34 and 56% lipids and 9 and 7% carbohydrates, respectively. In both Lps, mannose was the predominant monosaccharide detected by paper chromatography. SDS-PAGE revealed two apolipoproteins in each Lp with molecular masses of 225 kDa (apolipoprotein-I) and 79 kDa (apolipoprotein-II). The lipids were extracted and analyzed by thin-layer chromatography. The major phospholipids found were phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine in adult Lp, and phosphatidylcholine, phosphatidylethanolamine and sphingomyelin in larval Lp. Hydrocarbons, fatty acids and triacylglycerol were the major neutral lipids found in both Lps. Lps labeled in the protein moiety with radioactive iodine (125I-iodine) or in the lipid moiety with fluorescent lipids revealed direct evidence of endocytic uptake of Lps in live oocytes of C. maculatus.
Resumo:
Thylakoid membrane fractions were prepared from specific regions of thylakoid membranes of spinach (Spinacia oleracea). These fractions, which include grana (83), stroma (T3), grana core (8S), margins (Ma) and purified stroma (Y100) were prepared using a non-detergent method including a mild sonication and aqueous two-phase partitioning. The significance of PSlla and PSII~ centres have been described extensively in the literature. Previous work has characterized two types of PSII centres which are proposed to exist in different regions of the thylakoid membrane. a-centres are suggested to aggregate in stacked regions of grana whereas ~-centres are located in unstacked regions of stroma lamellae. The goal of this study is to characterize photosystem II from the isolated membrane vesicles representing different regions of the higher plant thylakoid membrane. The low temperature absorption spectra have been deconvoluted via Gaussian decomposition to estimate the relative sub-components that contribute to each fractions signature absorption spectrum. The relative sizes of the functional PSII antenna and the fluorescence induction kinetics were measured and used to determine the relative contributions of PSlla and PSII~ to each fraction. Picosecond chlorophyll fluorescence decay kinetics were collected for each fraction to characterize and gain insight into excitation energy transfer and primary electron transport in PSlla and PSII~ centres. The results presented here clearly illustrate the widely held notions of PSII/PS·I and PSlIa/PSII~ spatial separation. This study suggests that chlorophyll fluorescence decay lifetimes of PSII~ centres are shorter than those of PSlIa centres and, at FM, the longer lived of the two PSII components renders a larger yield in PSlIa-rich fractions, but smaller in PSIlr3-rich fractions.
Resumo:
Le transporteur de Na+/ acide monocarboxylique sensible à l’ibuprofène (SMCT1) est exprimé dans la membrane apicale de plusieurs épithélia. Son rôle physiologique dans la glande thyroïde reste cependant obscur mais on présume qu’il pourrait agir comme un transporteur apical d’iode nécessaire pour la synthèse des hormones thyroïdiennes. Récemment, on a montré que SMCT1 possède un courant de fuite anionique sensible à [Na+]e qui permettrait de transporter l’iode de façon électrogénique. Cependant, un efflux d’iode sensible à l’ibuprofène, mais indépendant de la [Na+]e a été aussi observé sur des cultures primaires des thyrocytes porcins, suggérant un autre mécanisme de transport d’iode par SMCT1. Ce travail vise à comprendre les caractéristiques de ce genre de transport en utilisant comme modèle d’expression les ovocytes de Xenopus laevis. Les résultats obtenus des essais de captation d’iode radioactif montrent que SMCT1 présente un transport d’iode sensible à l’ibuprofène de l’ordre de 30nmol/ovocyte/h. Si ce transport est non saturable en iode (0-100 mM), il nécessite du Na+ dans la solution externe. En effet, le remplacement du Na+ extracellulaire par le NMDG inhibe complètement le transport. En outre, on s’est intéressé à exclure la possibilité de différents artefacts. En ayant trouvé que la grande majorité de l’iode radioactif se trouve dans la partie soluble de l’ovocyte, on exclut une liaison non spécifique de l’iode à la membrane cellulaire. Cependant, une bonne proportion de l’iode transporté pourrait être liée à des protéines à l’intérieur de l`ovocyte. En effet, on observe une réduction du transport d’iode dans les ovocytes exprimant SMCT1 de 81,6 ± 2 % en présence de 2 % BSA dans la solution extracellulaire. Également, on écarte la possibilité que le transport d’iode soit le résultat de la surexpression de protéines de transport endogènes dont les canaux chlore. Le transport d’iode semble spécifique à l’expression de SMCT1 et de manière intéressante à l’expression d’un autre transporteur de monocarboxylates, MCT1. L’analyse de l’ensemble des essais, y compris le fait que l’amplitude du transport observé est 20 fois plus grande que celle du courant de fuite nous mène à proposer que SMCT1 puisse transporter l’iode de façon électroneutre. Cependant, le mécanisme par lequel ceci est accompli n’est pas évident à identifier. L’utilisation d’un autre modèle cellulaire serait surement utile pour répondre à cette question.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
La chaîne invariante (Ii ; CD74) est une protéine membranaire de type II qui joue un rôle majeur dans la présentation antigénique. Dans le réticulum endoplasmique (RE), Ii favorise l’assemblage du CMH II et prévient la liaison indésirable de polypeptides. Grâce à son motif di-leucine, la chaîne invariante cible le CMH II dans les endosomes. Une fois dans ces compartiments acides, Ii est dégradé, permettant la liaison de peptides de forte affinité qui seront ensuite présentés aux cellules T CD4+. Chez les souris déficientes en Ii murin (mIi), le CMH II présente une conformation non compacte typique des molécules vides ou liées faiblement à un peptide. Le transport du CMH II est aberrant ce qui conduit à une réduction de son expression en surface ainsi qu’à un défaut de présentation antigénique. De plus, Ii diversifie le répertoire de peptides et assure la sélection thymique des cellules T CD4+. Enfin, il a un rôle dans la maturation des cellules B et les souris déficientes en Ii présentent des nombres réduits de cellules B matures folliculaires (FO). L’isoforme mineure humaine p35 (Iip35) n’existe pas chez la souris et possède une extension cytoplasmique de 16 acides aminés contenant un motif R-x-R de rétention dans le RE. La sortie du RE est conditionnelle à la liaison du CMH II qui permet de masquer le motif de rétention. Iip35 agit comme dominant et impose la rétention aux autres isoformes d’Ii. Cependant, le rôle physiologique du motif R-x-R et, plus globalement, celui d’Iip35, demeurent nébuleux. Pour mieux cerner la fonction d’Iip35, nous avons généré des souris transgéniques (Tg) exprimant l’isoforme humaine Iip35 et avons analysé la conformation et le trafic du CMH II, la sélection thymique et la maturation des cellules B ainsi que la présentation antigénique. Nos résultats ont démontré qu’Iip35 favorise l’assemblage du CMH II dans le RE. Il induit également une conformation compacte du CMH II et augmente l’expression du CMH II en surface. De plus, Iip35 cible le CMH II dans les endosomes où un peptide de forte affinité se lie dans la niche peptidique. Par ailleurs, Iip35 diversifie le répertoire de peptides et rétablit totalement la sélection des cellules T CD4+ ainsi que le niveau d’expression du TCR de ces dernières. Iip35 restaure également la présentation antigénique de l’ovalbumine dont la présentation requiert l’expression d’Ii. Par contre, Iip35 rétablit la présentation des superantigènes mais à un niveau moindre que celui des souris sauvages. Ensuite, Iip35 permet le rétablissement de la sélection des cellules iNKT démontrant qu’il assiste la présentation des lipides par les molécules CD1d. Enfin, les résultats ont démontré qu’Iip35 restaure le développement des cellules B matures folliculaires (FO) mais pas celui des cellules B de la zone marginale. Ceci suggère qu’Iip35 est capable d’induire le développement des cellules FO sans stimulation préalable par le MIF (macrophage migration inhibitory factor). Ainsi, l’ensemble de ces résultats démontre qu’Iip35 est fonctionnel et assure la majorité des fonctions d’Ii. Cependant, Iip35 ne remplace pas mIi endogène concernant la maturation des cellules B MZ suggérant qu’il pourrait avoir un rôle de régulateur.
Resumo:
The EfeUOB system of Escherichia coli is a tripartite, low pH, ferrous iron transporter. It resembles the high-affinity iron transporter (Ftr1p-Fet3p) of yeast in that EfeU is homologous to Ftr1p, an integral-membrane iron-permease. However, EfeUOB lacks an equivalent of the Fet3p component—the multicopper oxidase with three cupredoxin-like domains. EfeO and EfeB are periplasmic but their precise roles are unclear. EfeO consists primarily of a C-terminal peptidase-M75 domain with a conserved ‘HxxE’ motif potentially involved in metal binding. The smaller N-terminal domain (EfeO-N) is predicted to be cupredoxin (Cup) like, suggesting a previously unrecognised similarity between EfeO and Fet3p. Our structural modelling of the E. coli EfeO Cup domain identifies two potential metal-binding sites. Site I is predicted to bind Cu2+ using three conserved residues (C41 and 103, and E66) and M101. Of these, only one (C103) is conserved in classical cupredoxins where it also acts as a Cu ligand. Site II most probably binds Fe3+ and consists of four well conserved surface Glu residues. Phylogenetic analysis indicates that the EfeO-Cup domains form a novel Cup family, designated the ‘EfeO-Cup’ family. Structural modelling of two other representative EfeO-Cup domains indicates that different subfamilies employ distinct ligand sets at their proposed metal-binding sites. The ~100 efeO homologues in the bacterial sequence databases are all associated with various iron-transport related genes indicating a common role for EfeO-Cup proteins in iron transport, supporting a new copper-iron connection in biology.
Resumo:
Spontaneous mutants of Rhizobium leguminosarum bv. viciae 3841 were isolated that grow faster than the wild type on gamma-aminobutyric acid (GABA) as the sole carbon and nitrogen source. These strains (RU1736 and RU1816) have frameshift mutations (gtsR101 and gtsR102, respectively) in a GntR-type regulator (GtsR) that result in a high rate of constitutive GABA transport. Tn5 mutagenesis and quantitative reverse transcription-PCR showed that GstR regulates expression of a large operon (pRL100242 to pRL100252) on the Sym plasmid that is required for GABA uptake. An ABC transport system, GtsABCD (for GABA transport system) (pRL100248-51), of the spermidine/putrescine family is part of this operon. GtsA is a periplasmic binding protein, GtsB and GtsC are integral membrane proteins, and GtsD is an ATP-binding subunit. Expression of gtsABCD from a lacZ promoter confirmed that it alone is responsible for high rates of GABA transport, enabling rapid growth of strain 3841 on GABA. Gts transports open-chain compounds with four or five carbon atoms with carboxyl and amino groups at, or close to, opposite termini. However, aromatic compounds with similar spacing between carboxyl and amino groups are excellent inhibitors of GABA uptake so they may also be transported. In addition to the ABC transporter, the operon contains two putative mono-oxygenases, a putative hydrolase, a putative aldehyde dehydrogenase, and a succinate semialdehyde dehydrogenase. This suggests the operon may be involved in the transport and breakdown of a more complex precursor to GABA. Gts is not expressed in pea bacteroids, and gtsB mutants are unaltered in their symbiotic phenotype, suggesting that Bra is the only GABA transport system available for amino acid cycling.
Resumo:
Bacteria commonly utilise a unique type of transporter, called Feo, to specifically acquire the ferrous (Fe2+) form of iron from their environment. Enterobacterial Feo systems are composed of three proteins: FeoA, a small, soluble SH3-domain protein probably located in the cytosol; FeoB, a large protein with a cytosolic N-terminal G-protein domain and a C-terminal integral inner-membrane domain containing two 'Gate' motifs which likely functions as the Fe2+ permease; and FeoC, a small protein apparently functioning as an [Fe-S]-dependent transcriptional repressor. We provide a review of the current literature combined with a bioinformatic assessment of bacterial Feo systems showing how they exhibit common features, as well as differences in organisation and composition which probably reflect variations in mechanisms employed and function.
Resumo:
Polarized epithelial cells are responsible for the vectorial transport of solutes and have a key role in maintaining body fluid and electrolyte homeostasis. Such cells contain structurally and functionally distinct plasma membrane domains. Brush border and basolateral membranes of renal and intestinal epithelial cells can be separated using a number of different separation techniques, which allow their different transport functions and receptor expressions to be studied. In this communication, we report a proteomic analysis of these two membrane segments, apical and basolateral, obtained from the rat renal cortex isolated by two different methods: differential centrifugation and free-flow electrophoresis. The study was aimed at assessing the nature of the major proteins isolated by these two separation techniques. Two analytical strategies were used: separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at the protein level or by cation-exchange high-performance liquid chromatography (HPLC) after proteolysis (i.e., at the peptide level). Proteolytic peptides derived from the proteins present in gel pieces or from HPLC fractions after proteolysis were sequenced by on-line liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several hundred proteins were identified in each membrane section. In addition to proteins known to be located at the apical and basolateral membranes, several novel proteins were also identified. In particular, a number of proteins with putative roles in signal transduction were identified in both membranes. To our knowledge, this is the first reported study to try and characterize the membrane proteome of polarized epithelial cells and to provide a data set of the most abundant proteins present in renal proximal tubule cell membranes.