970 resultados para Electron beam evaporations
Resumo:
A detailed knowledge of the physical phenomena underlying the generation and the transport of fast electrons generated in high-intensity laser-matter interactions is of fundamental importance for the fast ignition scheme for inertial confinement fusion.
Here we report on an experiment carried out with the VULCAN Petawatt beam and aimed at investigating the role of collisional return currents in the dynamics of the fast electron beam. To that scope, in the experiment counter-propagating electron beams were generated by double-sided irradiation of layered target foils containing a Ti layer. The experimental results were obtained for different time delays between the two laser beams as well as for single-sided irradiation of the target foils. The main diagnostics consisted of two bent mica crystal spectrometers placed at either side of the target foil. High-resolution X-ray spectra of the Ti emission lines in the range from the Ly alpha to the K alpha line were recorded. In addition, 2D X-ray images with spectral resolution were obtained by means of a novel diagnostic technique, the energy-encoded pin-hole camera, based on the use of a pin-hole array equipped with a CCD detector working in single-photon regime. The spectroscopic measurements suggest a higher target temperature for well-aligned laser beams and a precise timing between the two beams. The experimental results are presented and compared to simulation results.
Resumo:
Recent measurements using an X-ray Free Electron Laser (XFEL) and an Electron Beam Ion Trap at the Linac Coherent Light Source facility highlighted large discrepancies between the observed and theoretical values for the Fe XVII 3C/3D line intensity ratio. This result raised the question of whether the theoretical oscillator strengths may be significantly in error, due to insufficiencies in the atomic structure calculations. We present time-dependent spectral modeling of this experiment and show that non-equilibrium effects can dramatically reduce the predicted 3C/3D line intensity ratio, compared with that obtained by simply taking the ratio of oscillator strengths. Once these non-equilibrium effects are accounted for, the measured line intensity ratio can be used to determine a revised value for the 3C/3D oscillator strength ratio, giving a range from 3.0 to 3.5. We also provide a framework to narrow this range further, if more precise information about the pulse parameters can be determined. We discuss the implications of the new results for the use of Fe XVII spectral features as astrophysical diagnostics and investigate the importance of time-dependent effects in interpreting XFEL-excited plasmas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this letter, we report, for the first time, the real-time in situ nucleation and growth of Ag filaments on α-Ag2 WO4 crystals driven by an accelerated electron beam from an electronic microscope under high vacuum. We employed several techniques to characterise the material in depth. By using these techniques combined with first-principles modelling based on density functional theory, a mechanism for the Ag filament formation followed by a subsequent growth process from the nano-to micro-scale was proposed. In general, we have shown that an accelerated electron beam from an electronic microscope under high vacuum enables in situ visualisation of Ag filaments with subnanometer resolution and offers great potential for addressing many fundamental issues in materials science, chemistry, physics and other fields of science.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4748519]
Resumo:
In the present work, the formation and migration of point defects induced by electron irradiation in carbon nanostructures, including carbon onions, nanotubes and graphene layers, were investigated by in-situ TEM. The mobility of carbon atoms normal to the layers in graphitic nanoparticles, the mobility of carbon interstitials inside SWCNTs, and the migration of foreign atoms in graphene layers or in layers of carbon nanotubes were studied. The diffusion of carbon atoms in carbon onions was investigated by annealing carbon onions and observing the relaxation of the compressed clusters in the temperature range of 1200 – 2000oC. An activation energy of 5.0±0.3 eV was obtained. This rather high activation energy for atom exchange between the layers not only prevents the exchange of carbon atoms between the layers at lower temperature but also explains the high morphological and mechanical stability of graphite nanostructures. The migration of carbon atoms in SWCNTs was investigated quantitatively by cutting SWCNT bundles repeatedly with a focused electron beam at different temperatures. A migration barrier of about 0.25 eV was obtained for the diffusion of carbon atoms inside SWCNTs. This is an experimental confirmation of the high mobility of interstitial atoms inside carbon nanotubes, which corroborates previously developed theoretical models of interstitial diffusivity. Individual Au and Pt atoms in one- or two-layered graphene planes and MWCNTs were monitored in real time at high temperatures by high-resolution TEM. The direct observation of the behavior of Au and Pt atoms in graphenic structures in a temperature range of 600 – 700°C allows us to determine the sites occupied by the metal atoms in the graphene layer and the diffusivities of the metal atoms. It was found that metal atoms were located in single or multiple carbon vacancies, not in off-plane positions, and diffused by site exchange with carbon atoms. Metal atoms showed a tendency to form clusters those were stable for a few seconds. An activation energy of around 2.5 eV was obtained for the in-plane migration of both Au and Pt atoms in graphene (two-dimensional diffusion). The rather high activation energy indicates covalent bonding between metal and carbon atoms. Metal atoms were also observed to diffuse along the open edge of graphene layers (one-dimensional diffusion) with a slightly lower activation energy of about 2.3 eV. It is also found that the diffusion of metal atoms in curved graphenic layers of MWCNTs is slightly faster than in planar graphene.
Resumo:
This thesis presents a new imaging technique for ultracold quantum gases. Since the first observation of Bose-Einstein condensation, ultracold atoms have proven to be an interesting system to study fundamental quantum effects in many-body systems. Most of the experiments use optical imaging rnmethods to extract the information from the system and are therefore restricted to the fundamental limitation of this technique: the best achievable spatial resolution that can be achieved is comparable to the wavelength of the employed light field. Since the average atomic distance and the length scale of characteristic spatial structures in Bose-Einstein condensates such as vortices and solitons is between 100 nm and 500 nm, an imaging technique with an adequate spatial resolution is needed. This is achieved in this work by extending the method of scanning electron microscopy to ultracold quantum gases. A focused electron beam is scanned over the atom cloud and locally produces ions which are subsequently detected. The new imaging technique allows for the precise measurement of the density distribution of a trapped Bose-Einstein condensate. Furthermore, the spatial resolution is determined by imaging the atomic distribution in one-dimensional and two-dimensional optical lattices. Finally, the variety of the imaging method is demonstrated by the selective removal of single lattice site. rn
Resumo:
We have realized a Data Acquisition chain for the use and characterization of APSEL4D, a 32 x 128 Monolithic Active Pixel Sensor, developed as a prototype for frontier experiments in high energy particle physics. In particular a transition board was realized for the conversion between the chip and the FPGA voltage levels and for the signal quality enhancing. A Xilinx Spartan-3 FPGA was used for real time data processing, for the chip control and the communication with a Personal Computer through a 2.0 USB port. For this purpose a firmware code, developed in VHDL language, was written. Finally a Graphical User Interface for the online system monitoring, hit display and chip control, based on windows and widgets, was realized developing a C++ code and using Qt and Qwt dedicated libraries. APSEL4D and the full acquisition chain were characterized for the first time with the electron beam of the transmission electron microscope and with 55Fe and 90Sr radioactive sources. In addition, a beam test was performed at the T9 station of the CERN PS, where hadrons of momentum of 12 GeV/c are available. The very high time resolution of APSEL4D (up to 2.5 Mfps, but used at 6 kfps) was fundamental in realizing a single electron Young experiment using nanometric double slits obtained by a FIB technique. On high statistical samples, it was possible to observe the interference and diffractions of single isolated electrons traveling inside a transmission electron microscope. For the first time, the information on the distribution of the arrival time of the single electrons has been extracted.
Resumo:
Structure characterization of nanocrystalline intermediates and metastable phases is of primary importance for a deep understanding of synthetic processes undergoing solid-to-solid state phase transitions. Understanding the evolution from the first nucleation stage to the final synthetic product supports not only the optimization of existing processes, but might assist in tailoring new synthetic paths. A systematic investigation of intermediates and metastable phases is hampered because it is impossible to produce large crystals and only in few cases a pure synthetic product can be obtained. Structure investigation by X-ray powder diffraction methods is still challenging on nanoscale, especially when the sample is polyphasic. Electron diffraction has the advantage to collect data from single nanoscopic crystals, but is limited by data incompleteness, dynamical effects and fast deterioration of the sample under the electron beam. Automated diffraction tomography (ADT), a recently developed technique, making possible to collect more complete three-dimensional electron diffraction data and to reduce at the same time dynamical scattering and beam damage, thus allowing to investigate even beam sensitive materials (f.e. hydrated phases and organics). At present, ADT is the only technique able to deliver complete three-dimensional structural information from single nanoscopic grains, independently from other surrounding phases. Thus, ADT is an ideal technique for the study of on-going processes where different phases exist at the same time and undergo several structural transitions. In this study ADT was used as the main technique for structural characterization for three different systems and combined subsequently with other techniques, among which high-resolution transmission electron microscopy (HRTEM), cryo-TEM imaging, X-ray powder diffraction (XRPD) and energy disperse X-ray spectroscopy (EDX).rnAs possible laser host materials, i.e. materials with a broad band emission in the near-infrared region, two unknown phases were investigated in the ternary oxide system M2O-Al2O3-WO3 (M = K, Na). Both phases exhibit low purity as well as non-homogeneous size distribution and particle morphology. The structures solved by ADT are also affected by pseudo-symmetry. rnSodium titanate nanotubes and nanowires are both intermediate products in the synthesis of TiO2 nanorods which are used as additives to colloidal TiO2 film for improving efficiency of dye-sensitized solar cells (DSSC). The structural transition from nantubes to nanowires was investigated in a step by step time-resolved study. Nanowires were discovered to consist of a hitherto unknown phase of sodium titanate. This new phase, typically affected by pervasive defects like mutual layer shift, was structurally determined ab-initio on the basis of ADT data. rnThe third system is related with calcium carbonate nucleation and early crystallization. The first part of this study is dedicated to the extensive investigations of calcium carbonate formation in a step by step analysis, up to the appearance of crystalline individua. The second part is dedicated to the structure determination by ADT of the first-to-form anhydrated phase of CaCO3: vaterite. An exhaustive structure analysis of vaterite had previously been hampered by diffuse scattering, extra periodicities and fast deterioration of the material under electron irradiation. rn
Resumo:
The electron Monte Carlo (eMC) dose calculation algorithm available in the Eclipse treatment planning system (Varian Medical Systems) is based on the macro MC method and uses a beam model applicable to Varian linear accelerators. This leads to limitations in accuracy if eMC is applied to non-Varian machines. In this work eMC is generalized to also allow accurate dose calculations for electron beams from Elekta and Siemens accelerators. First, changes made in the previous study to use eMC for low electron beam energies of Varian accelerators are applied. Then, a generalized beam model is developed using a main electron source and a main photon source representing electrons and photons from the scattering foil, respectively, an edge source of electrons, a transmission source of photons and a line source of electrons and photons representing the particles from the scrapers or inserts and head scatter radiation. Regarding the macro MC dose calculation algorithm, the transport code of the secondary particles is improved. The macro MC dose calculations are validated with corresponding dose calculations using EGSnrc in homogeneous and inhomogeneous phantoms. The validation of the generalized eMC is carried out by comparing calculated and measured dose distributions in water for Varian, Elekta and Siemens machines for a variety of beam energies, applicator sizes and SSDs. The comparisons are performed in units of cGy per MU. Overall, a general agreement between calculated and measured dose distributions for all machine types and all combinations of parameters investigated is found to be within 2% or 2 mm. The results of the dose comparisons suggest that the generalized eMC is now suitable to calculate dose distributions for Varian, Elekta and Siemens linear accelerators with sufficient accuracy in the range of the investigated combinations of beam energies, applicator sizes and SSDs.
Resumo:
Purpose: To investigate the dosimetric properties of an electronic portal imaging device (EPID) for electron beam detection and to evaluate its potential for quality assurance (QA) of modulated electron radiotherapy (MERT). Methods: A commercially available EPID was used to detect electron beams shaped by a photon multileaf collimator (MLC) at a source-surface distance of 70 cm. The fundamental dosimetric properties such as reproducibility, dose linearity, field size response, energy response, and saturation were investigated for electron beams. A new method to acquire the flood-field for the EPID calibration was tested. For validation purpose, profiles of open fields and various MLC fields (square and irregular) were measured with a diode in water and compared to the EPID measurements. Finally, in order to use the EPID for QA of MERT delivery, a method was developed to reconstruct EPID two-dimensional (2D) dose distributions in a water-equivalent depth of 1.5 cm. Comparisons were performed with film measurement for static and dynamic monoenergy fields as well as for multienergy fields composed by several segments of different electron energies. Results: The advantageous EPID dosimetric properties already known for photons as reproducibility, linearity with dose, and dose rate were found to be identical for electron detection. The flood-field calibration method was proven to be effective and the EPID was capable to accurately reproduce the dose measured in water at 1.0 cm depth for 6 MeV, 1.3 cm for 9 MeV, and 1.5 cm for 12, 15, and 18 MeV. The deviations between the output factors measured with EPID and in water at these depths were within ±1.2% for all the energies with a mean deviation of 0.1%. The average gamma pass rate (criteria: 1.5%, 1.5 mm) for profile comparison between EPID and measurements in water was better than 99% for all the energies considered in this study. When comparing the reconstructed EPID 2D dose distributions at 1.5 cm depth to film measurements, the gamma pass rate (criteria: 2%, 2 mm) was better than 97% for all the tested cases. Conclusions: This study demonstrates the high potential of the EPID for electron dosimetry, and in particular, confirms the possibility to use it as an efficient verification tool for MERT delivery.
Resumo:
High brightness electron sources are of great importance for the operation of the hard X-ray free electron lasers. Field emission cathodes based on the double-gate metallic field emitter arrays (FEAs) can potentially offer higher brightness than the currently used ones. We report on the successful application of electron beam lithography for fabrication of the large-scale single-gate as well as double-gate FEAs. We demonstrate operational high-density single-gate FEAs with sub-micron pitch and total number of tips up to 106 as well as large-scale double-gate FEAs with large collimation gate apertures. The details of design, fabrication procedure and successful measurements of the emission current from the single- and double-gate cathodes are presented.