944 resultados para Electrochemical analysis
Resumo:
We have studied Au(55 nm)@SiO2 nanoparticles (NPs) on two low-index phases of gold and platinum single crystal electrodes in ClO4– and SO42– ion-containing electrolytes by both electrochemical methods and in-situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS). We showed the blocking of the electrode with surfactants originating from the synthesis of as-prepared SHINERS NPs. We introduce an efficient procedure to overcome this problem, which provides a fundamental platform for the application of SHINERS in surface electrochemistry and beyond. Our method is based on a hydrogen evolution treatment of the SHINERS-NP-modified single-crystal surfaces. The reliability of our preparation strategy is demonstrated in electrochemical SHINERS experiments on the potential-controlled adsorption and phase formation of pyridine on Au(hkl) and Pt(hkl). We obtained high-quality Raman spectra on these well-defined and structurally carefully characterized single-crystal surfaces. The analysis of the characteristic A1 vibrational modes revealed perfect agreement with the interpretation of single-crystal voltammetric and chronoamperometric experiments. Our study demonstrates that the SHINERS protocol developed in this work qualifies this Raman method as a pioneering approach with unique opportunities for in situ structure and reactivity studies at well-defined electrochemical solid/liquid interfaces.
Resumo:
Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge–discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g−1 at a current density of 10 μA cm−2 and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications.
Resumo:
Quinol:fumarate reductase (QFR) is a membrane protein complex that couples the reduction of fumarate to succinate to the oxidation of quinol to quinone, in a reaction opposite to that catalyzed by the related enzyme succinate:quinone reductase (succinate dehydrogenase). In the previously determined structure of QFR from Wolinella succinogenes, the site of fumarate reduction in the flavoprotein subunit A of the enzyme was identified, but the site of menaquinol oxidation was not. In the crystal structure, the acidic residue Glu-66 of the membrane spanning, diheme-containing subunit C lines a cavity that could be occupied by the substrate menaquinol. Here we describe that, after replacement of Glu-C66 with Gln by site-directed mutagenesis, the resulting mutant is unable to grow on fumarate and the purified enzyme lacks quinol oxidation activity. X-ray crystal structure analysis of the Glu-C66 → Gln variant enzyme at 3.1-Å resolution rules out any major structural changes compared with the wild-type enzyme. The oxidation-reduction potentials of the heme groups are not significantly affected. We conclude that Glu-C66 is an essential constituent of the menaquinol oxidation site. Because Glu-C66 is oriented toward a cavity leading to the periplasm, the release of two protons on menaquinol oxidation is expected to occur to the periplasm, whereas the uptake of two protons on fumarate reduction occurs from the cytoplasm. Thus our results indicate that the reaction catalyzed by W. succinogenes QFR generates a transmembrane electrochemical potential.
Resumo:
Electrochemical methods have been widely used to monitor physiologically important molecules in biological systems. This report describes the first application of the scanning electrochemical microscope (SECM) to probe the redox activity of individual living cells. The possibilities of measuring the rate and investigating the pathway of transmembrane charge transfer are demonstrated. By this approach, significant differences are detected in the redox responses given by nonmotile, nontransformed human breast epithelial cells, breast cells with a high level of motility (engendered by overexpression of protein kinase Cα), and highly metastatic breast cancer cells. SECM analysis of the three cell lines reveals reproducible differences with respect to the kinetics of charge transfer by several redox mediators.
Resumo:
We present a disposable optical sensor for Ascorbic Acid (AA). It uses a polyaniline based electrochromic sensing film that undergoes a color change when exposed to solutions of ascorbic acid at pH 3.0. The color is monitored by a conventional digital camera working with the hue (H) color coordinate. The electrochromic film was deposited on an Indium Tin Oxide (ITO) electrode by cyclic voltammetry and then characterized by atomic force microscopy, electrochemical and spectroscopic techniques. An estimation of the initial rate of H, as ΔH/Δt, is used as the analytical parameter and resulted in the following logarithmic relationship: ΔH/Δt = 0.029 log[AA] + 0.14, with a limit of detection of 17 μM. The relative standard deviation when using the same membrane 5 times was 7.4% for the blank, and 2.6% (for n = 3) on exposure to ascorbic acid in 160 μM concentration. The sensor is disposable and its applicability to pharmaceutical analysis was demonstrated. This configuration can be extended for future handheld configurations.
Resumo:
A novel polymer/TiC nanocomposites “PPA/TiC, poly(PA-co-ANI)/TiC and PANI/TiC” was successfully synthesized by chemical oxidation polymerization at room temperature using p-anisidine and/or aniline monomers and titanium carbide (TiC) in the presence of hydrochloric acid as a dopant with ammonium persulfate as oxidant. These nanocomposites obtained were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and thermogravimetric analysis (TGA). XRD indicated the presence of interactions between polymers and TiC nanoparticle and the TGA revealed that the TiC nanoparticles improve the thermal stability of the polymers. The electrical conductivity of nanocomposites is in the range of 0.079–0.91 S cm−1. The electrochemical behavior of the polymers extracted from the nanocomposites has been analyzed by cyclic voltammetry. Good electrochemical response has been observed for polymer films; the observed redox processes indicate that the polymerisation on TiC nanoparticles produces electroactive polymers. These nanocomposite microspheres can potentially used in commercial applications as fillers for antistatic and anticorrosion coatings.
Resumo:
The voltammetric profile of preferentially shaped platinum nanoparticles has been used to analyze the different sites present on the surface. For the first time, this analysis has been made in NaOH solutions and revisited in sulfuric and perchloric acid media. The comparison with the voltammetric profiles of the model surfaces, that is, single-crystal electrodes, allows assigning the different signals appearing in the voltammograms of the nanoparticle to specific sites on the surface. A good correlation between the shape of the nanoparticle determined by TEM and the voltammetric profile is obtained. For the nanoparticles characterized in alkaline media, the adsorbed species on the surface have been characterized, and three major regions can be identified. Below 0.2 V, the major contribution is due to hydrogen adsorption, whereas above 0.6 V, adsorbed OH is the main species on the surface. Between those values, the signals are due to the competitive adsorption/desorption process of OH/H. New criteria for determining the active area in NaOH solutions has been proposed. In this medium, the total charge density measured between 0.06 and 0.90 V stands for 390 μC cm–2. The areas measured are in perfect agreement with those measured in acid media. Once the nanoparticles have been characterized, the behavior of the nanoparticles toward CO oxidation is analyzed and compared with that observed for single-crystal electrodes.
Resumo:
Electrical energy storage is a really important issue nowadays. As electricity is not easy to be directly stored, it can be stored in other forms and converted back to electricity when needed. As a consequence, storage technologies for electricity can be classified by the form of storage, and in particular we focus on electrochemical energy storage systems, better known as electrochemical batteries. Largely the more widespread batteries are the Lead-Acid ones, in the two main types known as flooded and valve-regulated. Batteries need to be present in many important applications such as in renewable energy systems and in motor vehicles. Consequently, in order to simulate these complex electrical systems, reliable battery models are needed. Although there exist some models developed by experts of chemistry, they are too complex and not expressed in terms of electrical networks. Thus, they are not convenient for a practical use by electrical engineers, who need to interface these models with other electrical systems models, usually described by means of electrical circuits. There are many techniques available in literature by which a battery can be modeled. Starting from the Thevenin based electrical model, it can be adapted to be more reliable for Lead-Acid battery type, with the addition of a parasitic reaction branch and a parallel network. The third-order formulation of this model can be chosen, being a trustworthy general-purpose model, characterized by a good ratio between accuracy and complexity. Considering the equivalent circuit network, all the useful equations describing the battery model are discussed, and then implemented one by one in Matlab/Simulink. The model has been finally validated, and then used to simulate the battery behaviour in different typical conditions.
Resumo:
The nitrogen substitution in carbon materials is investigated theoretically using the density functional theory method. Our calculations show that nitrogen substitution decreases the hydrogen adsorption energy if hydrogen atoms are adsorbed on both nitrogen atoms and the neighboring carbon atoms. On the contrary, the hydrogen adsorption energy can be increased if hydrogen atoms are adsorbed only on the neighboring carbon atoms. The reason can be explained by the electronic structures analysis of N-substituted graphene sheets. Nitrogen substitution reduces the pi electron conjugation and increases the HOMO energy of a graphene sheet, and the nitrogen atom is not stable due to its 3-valent character. This raises an interesting research topic on the optimization of the N-substitution degree, and is important to many applications such as hydrogen storage and the tokamaks device. The electronic structure studies also explain well why nitrogen substitution increases the capacitance but decreases the electron conductivity of carbon electrodes as was experimentally observed in our experiments on the supercapacitor.
Resumo:
This thesis presents results of experiments designed to study the effect of applying electrochemical chloride extraction (ECE) to a range of different hardened cement pastes. Rectangular prism specimens of hydrated cement paste containing sodium chloride at different concentrations were subjected to electrolysis between the embedded steel cathodes and external anodes of activated titanium mesh. The cathodic current density used was in the range of 1 to 5 A/m2 with treatment periods of 4 to 12 weeks. After treatment, the specimens were cut into sections which were subjected to pore-solution expression and analysis in order to determine changes in the distribution of free and total ionic species. The effect of the ECE treatment on the physical and microstructural properties of the cements was studied by using microhardness and MIP techniques. XRD was employed to look at the possibility of ettringite redistribution as a result of the accumulation of soluble sulphate ions in the cement matrix near the cathode during ECE. Remigration of chloride which remains after the ECE treatment and distribution of other ions were studied by analysing specimens which had been stored for several months, after undergoing ECE treatment. The potentials of the steel cathodes were also monitored over the period to detect any changes in their corrosion state. The main findings of this research were as follows: 1, ECE, as applied in this investigation, was capable of removing both free and bound chloride. The removal process occurred relatively quickly and an equilibrium between free and bound chlorides in the specimens was maintained throughout. At the same time, alkali concentrations in the pore solution near the steel cathode increased. The soluble sulphate ionic concentration near the cathode also increased due to the local increase in the pH of the pore solution. 2, ECE caused some changes in physical and microstructural of the cement matrix. However these changes were minimal and in the case of microhardness, the results were highly scattered. Ettringite in the bulk material well away from the cathode was found not to increase significantly with the increase in charge passed.3, Remigration of chloride and other ionic species occurred slowly after cessation of ECE with a resultant gradual increase in the Cl-/OH- ratio around the steel.4, The removal of chloride from blended cements was slower than that from OPC.
Resumo:
Existing instrumental techniques must be adaptable to the analysis of novel explosives if science is to keep up with the practices of terrorists and criminals. The focus of this work has been the development of analytical techniques for the analysis of two types of novel explosives: ascorbic acid-based propellants, and improvised mixtures of concentrated hydrogen peroxide/fuel. In recent years, the use of these explosives in improvised explosive devices (IEDs) has increased. It is therefore important to develop methods which permit the identification of the nature of the original explosive from post-blast residues. Ascorbic acid-based propellants are low explosives which employ an ascorbic acid fuel source with a nitrate/perchlorate oxidizer. A method which utilized ion chromatography with indirect photometric detection was optimized for the analysis of intact propellants. Post-burn and post-blast residues if these propellants were analyzed. It was determined that the ascorbic acid fuel and nitrate oxidizer could be detected in intact propellants, as well as in the post-burn and post-blast residues. Degradation products of the nitrate and perchlorate oxidizers were also detected. With a quadrupole time-of-flight mass spectrometer (QToFMS), exact mass measurements are possible. When an HPLC instrument is coupled to a QToFMS, the combination of retention time with accurate mass measurements, mass spectral fragmentation information, and isotopic abundance patterns allows for the unequivocal identification of a target analyte. An optimized HPLC-ESI-QToFMS method was applied to the analysis of ascorbic acid-based propellants. Exact mass measurements were collected for the fuel and oxidizer anions, and their degradation products. Ascorbic acid was detected in the intact samples and half of the propellants subjected to open burning; the intact fuel molecule was not detected in any of the post-blast residue. Two methods were optimized for the analysis of trace levels of hydrogen peroxide: HPLC with fluorescence detection (HPLC-FD), and HPLC with electrochemical detection (HPLC-ED). Both techniques were extremely selective for hydrogen peroxide. Both methods were applied to the analysis of post-blast debris from improvised mixtures of concentrated hydrogen peroxide/fuel; hydrogen peroxide was detected on variety of substrates. Hydrogen peroxide was detected in the post-blast residues of the improvised explosives TATP and HMTD.
Resumo:
Existing instrumental techniques must be adaptable to the analysis of novel explosives if science is to keep up with the practices of terrorists and criminals. The focus of this work has been the development of analytical techniques for the analysis of two types of novel explosives: ascorbic acid-based propellants, and improvised mixtures of concentrated hydrogen peroxide/fuel. In recent years, the use of these explosives in improvised explosive devices (IEDs) has increased. It is therefore important to develop methods which permit the identification of the nature of the original explosive from post-blast residues. Ascorbic acid-based propellants are low explosives which employ an ascorbic acid fuel source with a nitrate/perchlorate oxidizer. A method which utilized ion chromatography with indirect photometric detection was optimized for the analysis of intact propellants. Post-burn and post-blast residues if these propellants were analyzed. It was determined that the ascorbic acid fuel and nitrate oxidizer could be detected in intact propellants, as well as in the post-burn and post-blast residues. Degradation products of the nitrate and perchlorate oxidizers were also detected. With a quadrupole time-of-flight mass spectrometer (QToFMS), exact mass measurements are possible. When an HPLC instrument is coupled to a QToFMS, the combination of retention time with accurate mass measurements, mass spectral fragmentation information, and isotopic abundance patterns allows for the unequivocal identification of a target analyte. An optimized HPLC-ESI-QToFMS method was applied to the analysis of ascorbic acid-based propellants. Exact mass measurements were collected for the fuel and oxidizer anions, and their degradation products. Ascorbic acid was detected in the intact samples and half of the propellants subjected to open burning; the intact fuel molecule was not detected in any of the post-blast residue. Two methods were optimized for the analysis of trace levels of hydrogen peroxide: HPLC with fluorescence detection (HPLC-FD), and HPLC with electrochemical detection (HPLC-ED). Both techniques were extremely selective for hydrogen peroxide. Both methods were applied to the analysis of post-blast debris from improvised mixtures of concentrated hydrogen peroxide/fuel; hydrogen peroxide was detected on variety of substrates. Hydrogen peroxide was detected in the post-blast residues of the improvised explosives TATP and HMTD.
Resumo:
The surface properties of InP electrodes were examined following anodization in (NH4)2S and KOH electrolytes. In both solutions, the observation of current peaks in the cyclic voltammetric curves was attributed to selective etching of the substrate and a film formation process. AFM images of samples anodized in the sulfide solution, revealed surface pitting and TEM micrographs revealed the porous nature of the film formed on top of the pitted substrate. After anodization in the KOH electrolyte, TEM images revealed that a porous layer extending 500 nm into the substrate had been formed. Analysis of the composition of the anodic products indicates the presence of In2S3 in films grown in (NH4)2S and an In2O3 phase within the porous network formed in KOH.
Resumo:
The work presented in this thesis examines the properties of BPEs of various configurations and under different operating conditions in a large planar LEC system. Detailed analysis of time-lapsed fluorescence images allows us to calculate the doping propagation speed from the BPEs. By introducing a linear array of BPEs or dispersed ITO particles, multiple light-emitting junctions or a bulk homojunction have been demonstrated. In conclusion, it has been observed that both applied bias voltages and sizes of BPEs affected the electrochemical doping from the BPE. If the applied bias voltage was initially not sufficiently high enough, a delay in appearance of doping from the BPE would take place. Experiments of parallel BPEs with different sizes (large, medium, small) demonstrate that the potential difference across the BPEs has played a vital role in doping initiation. Also, the p-doping propagation distance from medium-sized BPE has displayed an exponential growth over the time-span of 70 seconds. Experiments with a linear array of BPEs with the same size demonstrate that the doping propagation speed of each floating BPE was the same regardless of its position between the driving electrodes. Probing experiments under high driving voltages further demonstrated the potential of having a much more efficient light emission from an LEC with multiple BPEs.
Resumo:
Tetrodotoxin (TTX) is a low molecular weight and potent marine neurotoxin which is usually present in some species of puffer fish. TTX selectively binds to voltage-sensitive sodium channels (VSGCs), blocking the influx of sodium into the cell and affecting neural transmission. The bioaccumulation of this toxin in seafood can poses a risk to human safety. With the purpose of achieving cheap, specific and reliable tools to determine TTX in puffer fish samples, a self-assembled dithiol-based immunoassay, an electrochemical immunosensor and an optical Surface Plasmon Resonance (SPR) immunosensor are proposed. The immunoassay for TTX based on the use of dithiols self-assembled on maleimide-plates (mELISA) has been able to detect as low as 2.28 μg/L of TTX. The effect of different puffer fish matrixes on this mELISA has been quantified and the corresponding correction factors have been established. This
mELISA has enabled to establish the cross-reactivity factors for four TTX analogues: 5,6,11-trideoxy-TTX, 5,6,11-trideoxy-4-anhydro-TTX, 11-nor-TTX-6-ol and 5,11-deoxy-TTX. The crossreactivity factors have also been established by the optical SPR immunosensor previously reported, which had a limit of detection (LOD) of 4.27 μg/L. The mELISA and the SPR immunosensor have then been tested with spiked-puffer fish matrixes, providing an effective
LOD of 0.23 and 0.43 mg/kg respectively, well below the limit set in Japan (2 mg/kg). The mELISA and the SPR immunosensor have also been applied to the analysis of naturally contaminated puffer fish samples, providing similar TTXs contents between techniques and also compared to LC-MS/MS. The suitability of these immunochemical techniques has been demonstrated not only for screening purposes, but also for research activities. Currently, given that dithiols could improve the electron transfer and the sensitivity of an electrochemical assay, the mELISA strategy is being transferred to gold electrodes for the electrochemical detection of TTX and the subsequent development of the multiplexed electrochemical immunosensor.