962 resultados para Effective Temperature


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dual-parameter optical sensor has been realized by UV-writing a long-period and a Bragg grating structure in D-fiber. The hybrid configuration permits the detection of the temperature from the latter and measuring the external refractive index from the former responses, respectively. The employment of the D-fiber allows as effective modification and enhancement of the device sensitivity by cladding etching. The grating sensor has been used to measure the concentrations of aqueous sugar solutions, demonstrating the potential capability to detect concentration changes as small as 0.01%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterogeneous multi-core FPGAs contain different types of cores, which can improve efficiency when used with an effective online task scheduler. However, it is not easy to find the right cores for tasks when there are multiple objectives or dozens of cores. Inappropriate scheduling may cause hot spots which decrease the reliability of the chip. Given that, our research builds a simulating platform to evaluate all kinds of scheduling algorithms on a variety of architectures. On this platform, we provide an online scheduler which uses multi-objective evolutionary algorithm (EA). Comparing the EA and current algorithms such as Predictive Dynamic Thermal Management (PDTM) and Adaptive Temperature Threshold Dynamic Thermal Management (ATDTM), we find some drawbacks in previous work. First, current algorithms are overly dependent on manually set constant parameters. Second, those algorithms neglect optimization for heterogeneous architectures. Third, they use single-objective methods, or use linear weighting method to convert a multi-objective optimization into a single-objective optimization. Unlike other algorithms, the EA is adaptive and does not require resetting parameters when workloads switch from one to another. EAs also improve performance when used on heterogeneous architecture. A efficient Pareto front can be obtained with EAs for the purpose of multiple objectives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly sensitive and selective detection of volatile organic compounds (VOCs) with fast response time is imperative based on safety requirements, yet often remains a challenge. Herein, we propose an effective solution, preparing a novel gas sensor comprised of amorphous nanoflake arrays (a-NFAs) with specific surface groups. The sensor was produced via an extremely simple process in which a-NFAs of CdO were deposited directly onto an interdigital electrode immersed in a chemical bath under ambient conditions. Upon exposure to a widely used VOC, diethyl ether (DEE), the sensor exhibits excellent performance, more specifically, the quickest response, lowest detection limit and highest selectivity ever reported for DEE as a target gas. The superior gas-sensing properties of the prepared a-NFAs are found to arise from their open trumpet-shaped morphology, defect-rich amorphous nature, and surface CO groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel real-time power-device temperature estimation method that monitors the power MOSFET's junction temperature shift arising from thermal aging effects and incorporates the updated electrothermal models of power modules into digital controllers. Currently, the real-time estimator is emerging as an important tool for active control of device junction temperature as well as online health monitoring for power electronic systems, but its thermal model fails to address the device's ongoing degradation. Because of a mismatch of coefficients of thermal expansion between layers of power devices, repetitive thermal cycling will cause cracks, voids, and even delamination within the device components, particularly in the solder and thermal grease layers. Consequently, the thermal resistance of power devices will increase, making it possible to use thermal resistance (and junction temperature) as key indicators for condition monitoring and control purposes. In this paper, the predicted device temperature via threshold voltage measurements is compared with the real-time estimated ones, and the difference is attributed to the aging of the device. The thermal models in digital controllers are frequently updated to correct the shift caused by thermal aging effects. Experimental results on three power MOSFETs confirm that the proposed methodologies are effective to incorporate the thermal aging effects in the power-device temperature estimator with good accuracy. The developed adaptive technologies can be applied to other power devices such as IGBTs and SiC MOSFETs, and have significant economic implications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photovoltaic (PV) solar power generation is proven to be effective and sustainable but is currently hampered by relatively high costs and low conversion efficiency. This paper addresses both issues by presenting a low-cost and efficient temperature distribution analysis for identifying PV module mismatch faults by thermography. Mismatch faults reduce the power output and cause potential damage to PV cells. This paper first defines three fault categories in terms of fault levels, which lead to different terminal characteristics of the PV modules. The investigation of three faults is also conducted analytically and experimentally, and maintenance suggestions are also provided for different fault types. The proposed methodology is developed to combine the electrical and thermal characteristics of PV cells subjected to different fault mechanisms through simulation and experimental tests. Furthermore, the fault diagnosis method can be incorporated into the maximum power point tracking schemes to shift the operating point of the PV string. The developed technology has improved over the existing ones in locating the faulty cell by a thermal camera, providing a remedial measure, and maximizing the power output under faulty conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Miniature direct methanol fuel cells (DMFCs) are promising micro power sources for portable appliction. Low temperature cofired ceramic (LTCC), a competitive technology for current MEMS based fabrication, provides cost-effective mass manufacturing route for miniature DMFCs. Porous silver tape is adapted as electrodes to replace the traditional porous carbon electrodes due to its compatibility to LTCC processing and other electrochemical advantages. Electrochemical evaluation of silver under DMFCs operating conditions demonstrated that silver is a good electrode for DMFCs because of its reasonable corrosion resistance, low passivating current, and enhanced catalytic effect. Two catalyst loading methods (cofiring and postfiring) of the platinum and ruthenium catalysts are evaluated for LTCC based processing. The electrochemical analysis exhibits that the cofired path out-performs the postfiring path both at the anode and cathode. The reason is the formation of high surface area precipitated whiskers. Self-constraint sintering is utilized to overcome the difficulties of the large difference of coefficient of thermal expansion (CTE) between silver and LTCC (Dupont 951) tape during cofiring. The graphite sheet employed as a cavity fugitive insert guarantees cavity dimension conservation. Finally, performance of the membrane electrode assembly (MEA) with the porous silver electrode in the regular graphite electrode based cell and the integrated cofired cell is measured under passive fuel feeding condition. The MEA of the regular cell performs better as the electrode porosity and temperature increased. The power density of 10 mWcm-2 was obtained at ambient conditions with 1M methanol and it increased to 16 mWcm -2 at 50°C from an open circuit voltage of 0.58V. For the integrated prototype cell, the best performance, which depends on the balance methanol crossover and mass transfer at different temperatures and methanol concentrations, reaches 1.13 mWcm-2 at 2M methanol solution at ambient pressure. The porous media pore structure increases the methanol crossover resistance. As temperature increased to 60°C, the device increases to 2.14 mWcm-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased device density, switching speeds of integrated circuits and decrease in package size is placing new demands for high power thermal-management. The convectional method of forced air cooling with passive heat sink can handle heat fluxes up-to 3-5W/cm2; however current microprocessors are operating at levels of 100W/cm2, This demands the usage of novel thermal-management systems. In this work, water-cooling systems with active heat sink are embedded in the substrate. The research involved fabricating LTCC substrates of various configurations - an open-duct substrate, the second with thermal vias and the third with thermal vias and free-standing metal columns and metal foil. Thermal testing was performed experimentally and these results are compared with CFD results. An overall thermal resistance for the base substrate is demonstrated to be 3.4oC/W-cm2. Addition of thermal vias reduces the effective resistance of the system by 7times and further addition of free standing columns reduced it by 20times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sea lice (Lepeophtheirus salmonis) are an economically significant parasite in salmonid aquaculture. They exhibit temperature-dependent development rates and salinity-dependent mortality, which can greatly impact sea lice population dynamics, but no deterministic models have incorporated these seasonal variables. To understand how seasonality affects sea lice population dynamics, I derive a delay differential equation model with temperature and salinity dependence. I find that peak reproductive output in Newfoundland and British Columbia differs by four months. A sensitivity analysis shows sea lice abundance is most sensitive to variation in mean annual water temperature and salinity, whereas it is lease sensitive to infection rate. Additionally, I investigate the effects of production cycle timing on sea lice management and find that optimal production cycle start times are between the 281st and 337th days of the year in Newfoundland. I also demonstrate that adjusting follow-up treatment timing in response to temperature can improve treatment regimes. My results suggest that effective sea lice management requires consideration of local temperature and salinity patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports the application of banana peel as a novel bioadsorbent for in vitro removal of five mycotoxins (aflatoxins (AFB1, AFB2, AFG1, AFG2) and ochratoxin A). The effect of operational parameters including initial pH, adsorbent dose, contact time and temperature were studied in batch adsorption experiments. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and point of zero charge (pHpzc) analysis were used to characterise the adsorbent material. Aflatoxins’ adsorption equilibrium was achieved in 15 min, with highest adsorption at alkaline pH (6–8), while ochratoxin has not shown any significant adsorption due to surface charge repulsion. The experimental equilibrium data were tested by Langmuir, Freundlich and Hill isotherms. The Langmuir isotherm was found to be the best fitted model for aflatoxins, and the maximum monolayer coverage (Q0) was determined to be 8.4, 9.5, 0.4 and 1.1 ng mg−1 for AFB1, AFB2, AFG1 and AFG2 respectively. Thermodynamic parameters including changes in free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) were determined for the four aflatoxins. Free energy change and enthalpy change demonstrated that the adsorption process was exothermic and spontaneous. Adsorption and desorption study at different pH further demonstrated that the sorption of toxins was strong enough to sustain pH changes that would be experienced in the gastrointestinal tract. This study suggests that biosorption of aflatoxins by dried banana peel may be an effective low-cost decontamination method for incorporation in animal feed diets. © 2016 Informa UK Limited, trading as Taylor & Francis Group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Minimization of undesirable temperature gradients in all dimensions of a planar solid oxide fuel cell (SOFC) is central to the thermal management and commercialization of this electrochemical reactor. This article explores the effective operating variables on the temperature gradient in a multilayer SOFC stack and presents a trade-off optimization. Three promising approaches are numerically tested via a model-based sensitivity analysis. The numerically efficient thermo-chemical model that had already been developed by the authors for the cell scale investigations (Tang et al. Chem. Eng. J. 2016, 290, 252-262) is integrated and extended in this work to allow further thermal studies at commercial scales. Initially, the most common approach for the minimization of stack's thermal inhomogeneity, i.e., usage of the excess air, is critically assessed. Subsequently, the adjustment of inlet gas temperatures is introduced as a complementary methodology to reduce the efficiency loss due to application of excess air. As another practical approach, regulation of the oxygen fraction in the cathode coolant stream is examined from both technical and economic viewpoints. Finally, a multiobjective optimization calculation is conducted to find an operating condition in which stack's efficiency and temperature gradient are maximum and minimum, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low temperature synthesis method based on the decomposition of urea at 90°C in water has been developed to synthesise fraipontite. This material is characterised by a basal reflection 001 at 7.44 Å. The trioctahedral nature of the fraipontite is shown by the presence of a 06l band around 1.54 Å, while a minor band around 1.51 Å indicates some cation ordering between Zn and Al resulting in Al-rich areas with a more dioctahedral nature. TEM and IR indicate that no separate kaolinite phase is present. An increase in the Al content however, did result in the formation of some SiO2 in the form of quartz. Minor impurities of carbonate salts were observed during the synthesis caused by to the formation of CO32- during the decomposition of urea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research work analyses techniques for implementing a cell-centred finite-volume time-domain (ccFV-TD) computational methodology for the purpose of studying microwave heating. Various state-of-the-art spatial and temporal discretisation methods employed to solve Maxwell's equations on multidimensional structured grid networks are investigated, and the dispersive and dissipative errors inherent in those techniques examined. Both staggered and unstaggered grid approaches are considered. Upwind schemes using a Riemann solver and intensity vector splitting are studied and evaluated. Staggered and unstaggered Leapfrog and Runge-Kutta time integration methods are analysed in terms of phase and amplitude error to identify which method is the most accurate and efficient for simulating microwave heating processes. The implementation and migration of typical electromagnetic boundary conditions. from staggered in space to cell-centred approaches also is deliberated. In particular, an existing perfectly matched layer absorbing boundary methodology is adapted to formulate a new cell-centred boundary implementation for the ccFV-TD solvers. Finally for microwave heating purposes, a comparison of analytical and numerical results for standard case studies in rectangular waveguides allows the accuracy of the developed methods to be assessed.