976 resultados para EXCITATION-ENERGIES
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Gadolinium oxysulfide powders doped with different Tb3+ concentrations were prepared from sulfur vaporization on rare earths' basic carbonate precursors. Single-phase Gd2O2S samples were obtained, with Tb3+ doping up to 9 at%. The study of the excitation mechanisms revealed that the Tb3+ emission might occur after the direct Tb3+ excitation either by energy transfer from Gd3+ or from the phosphor host. The characteristic terbium emission lines were observed, resulting from the radiative decay from D-5(3) or D-5(4), to F-7(j) levels. The cross-relaxation phenomenon was observed and its effects on the materials emission color were discussed based on the CIE diagram. By using time-resolved spectroscopy, D-5(3) -> F-7(J) and D-5(4) -> F-7(J) transitions were separated. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The ground state masses and binding energies of the nucleon, lambda0, lambdac+ , lambdab0 are studied within a constituent quark QCD-inspired light-front model. The light-front Faddeev equations for the Qqq composite spin 1/2 baryons, are derived and solved numerically. The experimental data for the masses are qualitatively described by a flavor independent effective interaction.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A semiclassical approach to study pure Coulomb excitation of Pb-208 giant dipole isovector resonance is examined. We consider medium energy projectiles and assume the target excitation to be described by a simple Goldhaber-Teller model. It is shown that the main features concerning the angular distribution are obtained in the angular range described by the model and an estimate is made of the pure Coulomb dipole contribution to the measured cross sections.
Resumo:
Using the hyperspherical adiabatic approach in a coupled-channel calculation, we present precise binding energies of excitons trapped by impurity donors in semiconductors within the effective-mass approximation. Energies for such three-body systems are presented as a function of the relative electron-hole mass sigma in the range 1 less than or equal to1/sigma less than or equal to6, where the Born-Oppenheimer approach is not efficiently applicable. The hyperspherical approach leads to precise energies using the intuitive picture of potential curves and nonadiabatic couplings in an ab initio procedure. We also present an estimation for a critical value of sigma (sigma (crit)) for which no bound state can be found. Comparisons are given with results of prior work by other authors.
Resumo:
We present results for medium-energy elastic, inelastic [transition to He(1s2(1)s), He(1s2(1)p), He(1s3(1)s), and He(1s3(1)p) states], capture [to Ps(1s), Ps(2s), and Ps(2p) states of the positronium (Ps) atom] and total cross sections of positron-helium scattering in the close coupling approach using realistic wave functions.
On non-ideal simple portal frame structural model: Experimental results under a non-ideal excitation
Resumo:
We present measurements of the non-linear oscillations of a portal frame foundation for a non-ideal motor. We consider a three-time redundant structure with two columns, clamped in their bases and a horizontal beam. An electrical unbalanced motor is mounted at mid span of the beam. Two non-linear phenomena are studied: a) mode saturation and energy transfer between modes; b) interaction between high amplitude motions of the structure and the rotation regime of a real limited power motor. The dynamic characteristics of the structure were chosen to have one-to-two internal resonance between the anti-symmetrical mode (sway motions) and the first symmetrical mode natural frequencies. As the excitation frequency reaches near resonance conditions with the 2nd natural frequency, the amplitude of this mode grows up to a certain level and then it saturates. The surplus energy pumped into the system is transferred to the sway mode, which experiences a sudden increase in its amplitude. Energy is transformed from low amplitude high frequency motion into high amplitude low frequency motion. Such a transformation is potentially dangerous.We consider the fact that real motors, such as the one used in this study, have limited power output. In this case, this energy source is said to be non-ideal, in contrast to the ideal source whose amplitude and frequency are independent of the motion of the structure. Our experimental research detected the Sommerfeld Effect: as the motor accelerates to reach near resonant conditions, a considerable part of its output energy is consumed to generate large amplitude motions of the structure and not to increase its own angular speed. For certain parameters of the system, the motor can get stuck at resonance not having enough power to reach higher rotation regimes. If some more power is available, jump phenomena may occur from near resonance to considerably higher motor speed regimes, no stable motions being possible between these two.
Resumo:
In this work we intend to study a class of time-dependent quantum systems with non-Hermitian Hamiltonians, particularly those whose Hermitian counterparts are important for the comprehension of posed problems in quantum optics and quantum chemistry. They consist of an oscillator with time-dependent mass and frequency under the action of a time-dependent imaginary potential. The wave functions are used to obtain the expectation value of the Hamiltonian. Although it is neither Hermitian nor PT symmetric, the Hamiltonian under study exhibits real values of energy.
Resumo:
We have obtained the photoconductivity (PC) excitation spectrum for a stretch-oriented poly(paraphenylene vinylene) film over a wide spectral range (up to 5 eV). The measurements were performed in the surface cell configuration with the electric field parallel or perpendicular to the stretch direction. Although the sample had a stretch ratio of similar to 4, the dark conductivity and the steady-state photoconductivity were both about 40 and 20 times higher with the electric field parallel to the average chain direction, respectively. However, the shape of the PC excitation spectrum was independent of field direction and did not show a significant rise in the ultraviolet, as is usually observed for measurements in the photodiode configuration. The implications of these results to the charge photogeneration mechanism in conjugated polymers are discussed.
Resumo:
We analyze the process e+ e- --> e+ e- gamma-gamma --> e+ e- l+ l- (l = e, mu, tau-leptons) considering several nonstandard contributions in order to search for new physics beyond the standard model. We are able to test compositeness up to the TeV mass scale at LEP II and CLIC energies.
Resumo:
Ultrafast photoinduced absorption by infrared-active vibrational modes is used to detect charged solitons in oriented trans-polyacetylene. Soliton pairs are photogenerated within similar to250 fs with quantum efficiencies (phi(ch)) approaching unity. The excitation spectrum of phi(ch) shows an onset at similar to1.0 eV with a weak photon energy dependence up to 4.7 eV. The results are consistent with the ultrafast soliton formation predicted by Su and Schrieffer and with the Su-Scrieffer-Heeger threshold of 2E(g)/pi for soliton pair production. The recombination dynamics of charged solitons is very fast (initial decay<1 ps) with a modest dependence on the pump photon energy.
Resumo:
Within the approach of supersymmetric quantum mechanics associated with the variational method a recipe to construct the superpotential of three-dimensional confined potentials in general is proposed. To illustrate the construction, the energies of the harmonic oscillator and the Hulthen potential, both confined in three dimensions are evaluated. Comparison with the corresponding results of other approximative and exact numerical results is presented. (C) 2003 Elsevier B.V. All rights reserved.