990 resultados para ETH Zurich
Resumo:
Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis (MS). Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated by agents such as interferon-g (IFN-g) and lipopolysaccharide (LPS). Aggregating brain cultures exposed to a repeated treatment (3 fold) with IFN-g (50 U/ml) and LPS (5 ug/ml) were used as an in vitro model of demyelination. Demyelination could be due to either the direct effect of IFN-g and LPS on oligodendrocytes or the IFN-g and LPS-induced inflammatory response. We investigated the involvement of microglial reactivity in demylination and remyelination by using minocycline, an antibiotic known to block microglial reactivity. Changes in myelination were examined by measuring the expression of myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) at the mRNA level by quantitative RT-PCR and at the protein level by Western blotting and immunohistochemistry. To evaluate brain inflammatory reactions, microglia were stained with isolectin B4 (IB4), quantitative RT-PCR was used to determine the expression of tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), and inducible NO synthase (iNOS). The repeated treatment with IFN-g and LPS caused demyelination, as indicated by a decrease in MBP and MOG expression. It also activated microglial cells, and up-regulated TNF-a, IL-6, and iNOS expression. Although minocycline did not affect the IFN-g- and LPS-induced upregulation of TNF-a, IL-6, it decreased the number of IB4-labeled microglial cells. Furthermore, minocycline did not prevent demyelination, whereas it strongly increased MBP expression one week after the end of the demyelinating treatment. In conclusion, the present results show that minocycline promoted remyelination after IFN-g- and LPS-induced demyelination, presumably due to its effects on microglial cells.
Resumo:
Hyperammonemia in neonates and infants affects brain development and causes mental retardation. We report that ammonium impaired cholinergic axonal growth and altered localization and phosphorylation of intermediate neurofilament protein in rat reaggregated brain cell primary cultures. This effect was restricted to the phase of early maturation but did not occur after synaptogenesis. Exposure to NH4Cl decreased intracellular creatine, phosphocreatine, and ADP. We demonstrate that creatine cotreatment protected axons from ammonium toxic effects, although this did not restore high-energy phosphates. The protection by creatine was glial cell-dependent. Our findings suggest that the means to efficiently sustain CNS creatine concentration in hyperammonemic neonates and infants should be assessed to prevent impairment of axonogenesis and irreversible brain damage.
Resumo:
It is well known that exposure to low doses of lead causes long-lasting neurobehavioural deficits, but the cellular changes underlying these behavioural changes remain to be elucidated. A protective role of glial cells on neurons through lead sequestration by astrocytes has been proposed. The possible modulation of lead neurotoxicity by neuron-glia interactions was examined in three-dimensional cultures of foetal rat telencephalon. Mixed-brain cell cultures or cultures enriched in either neurons or glial cells were treated for 10 days with lead acetate (10(-6) m), a concentration below the limit of cytotoxicity. Intracellular lead content and cell type-specific enzyme activities were determined. It was found that in enriched cultures neurons stored more lead than glial cells, and each cell type alone stored more lead than in co-culture. Moreover, glial cells but not neurons were more affected by lead in enriched culture than in co-culture. These results show that neuron-glia interactions attenuate the cellular lead uptake and the glial susceptibility to lead, but they do not support the idea of a protective role of astrocytes.
Resumo:
A l'heure actuelle, le monitoring de la problématique du cannabis en Suisse constitue un ensemble de travaux qui permettent le suivi de la situation au niveau national et qui sont mis en oeuvre par un consortium d'instituts. Ce monitoring comprend l'étude présentée dans ce rapport, l'étude sentinelle. Elle s'intéresse à l'évolution de la situation en matière de cannabis ainsi qu'à la gestion de cette situation au niveau local. Ainsi, les observations relevées par des professionnels de terrain dans différents domaines (santé/social, école/formation professionnelle, police/justice) et dans quatre cantons suisses (St Gall, Tessin, Vaud, Zurich), dits "sentinelle", sont récoltées et analysées annuellement. [P. 5]
Resumo:
Neuromotor functioning - i.e., timed performance and quality of movements - was examined in 66 left-handed children and adolescents between 5 and 18.5 years by means of the Zurich Neuromotor Assessment. Quality of movements was assessed by the degree and the frequency of associated movements. Results were compared to normative data from 593 right-handers. The overall scores for timed motor performance were similar for left-handers and right-handers, while left-handers had more associated movements than right-handers with both sides. In agreement with previous studies in adults, we found that left-handed children were less lateralized than right-handers. They performed faster with their non-dominant side and slower with their dominant side. This finding was roughly independent of age, which may indicate that handedness does not reflect long-term effects of previous motor experience, but may be primarily attributed to genetic factors.
Resumo:
We implemented Biot-type porous wave equations in a pseudo-spectral numerical modeling algorithm for the simulation of Stoneley waves in porous media. Fourier and Chebyshev methods are used to compute the spatial derivatives along the horizontal and vertical directions, respectively. To prevent from overly short time steps due to the small grid spacing at the top and bottom of the model as a consequence of the Chebyshev operator, the mesh is stretched in the vertical direction. As a large benefit, the Chebyshev operator allows for an explicit treatment of interfaces. Boundary conditions can be implemented with a characteristics approach. The characteristic variables are evaluated at zero viscosity. We use this approach to model seismic wave propagation at the interface between a fluid and a porous medium. Each medium is represented by a different mesh and the two meshes are connected through the above described characteristics domain-decomposition method. We show an experiment for sealed pore boundary conditions, where we first compare the numerical solution to an analytical solution. We then show the influence of heterogeneity and viscosity of the pore fluid on the propagation of the Stoneley wave and surface waves in general.
Resumo:
Brain inflammatory response is triggered by the activation of microglial cells and astrocytes in response to various types of CNS injury, including neurotoxic insults. Its outcome is determined by cellular interactions, inflammatory mediators, as well as trophic and/or cytotoxic signals, and depends on many additional factors such as the intensity and duration of the insult, the extent of both the primary neuronal damage and glial reactivity and the developmental stage of the brain. Depending on particular circumstances, the brain inflammatory response can promote neuroprotection, regeneration or neurodegeneration. Glial reactivity, regarded as the central phenomenon of brain inflammation, has also been used as an early marker of neurotoxicity. To study the mechanisms underlying the glial reactivity, serum-free aggregating brain cell cultures were used as an in vitro model to test the effects of conventional neurotoxicants such as organophosphate pesticides, heavy metals, excitotoxins and mycotoxins. This approach was found to be relevant and justified by the complex cell-cell interactions involved in the brain inflammatory response, the variability of the glial reactions and the multitude of mediators involved. All these variables need to be considered for the elucidation of the specific cellular and molecular reactions and their consequences caused by a given chemical insult.
Resumo:
Neuroinflammation is observed in many brain pathologies: in neurodegenerative diseases and multiple sclerosis as well as in chemically induced lesions. It is characterized by the reactivity of microglial cells and astrocytes, activation of inducible NO-synthase (i-NOS), and increased expression and/or release of cytokines and chemokines. Clearly, cell-to-cell signaling between the different brain cell types plays an important role in the initiation and propagation of neuroinflammation, but despite the growing list of known molecular actors, the underlying pathways and the sequence of events remain to be fully elucidated. The present chapter presents an example of how to assess neuroinflammation in complex brain tissues, using aggregating brain cell cultures as an in vitro model. This three-dimensional cell culture system provides optimal cell-to-cell interactions crucial for histotypic cellular maturation and control of neuroinflammatory processes. The techniques described here comprise immunocytochemistry to assess the reactivity of microglia and astrocytes and the expression of cytokines; quantitative RT-PCR to measure the mRNA expression of cytokines (TNF-α, IL-1β, IL-6, IL-1ra, TGF-β, IL-15, IFN-γ), chemokines (ccl5, cxcl1, cxcl2), and i-NOS; and immunoblotting to assess MAP kinase pathway activation (phosphorylation of p38 and p44/42 MAP kinases).