955 resultados para EEG, Tilt, Zero gravity, Weightlessness, Brain hemodynamics
Resumo:
Various systems for measuring propellant content in spacecrafts under weightlessness conditions are reviewed. The cavity resonator method is found to be the most suitable measurement; technique. This method is analyzed in detail. A determination of errors intrinsec to the method is carried out.
Resumo:
Studies of patients with temporal lobe epilepsy provide few descriptions of seizures that arise in the temporopolar and the anterior temporobasal brain region. Based on connectivity, it might be assumed that the semiology of these seizures is similar to that of medial temporal lobe epilepsy. However, accumulating evidence suggests that the anterior temporobasal cortex may play an important role in the language system, which could account for particular features of seizures arising here. We studied the electroclinical features of seizures in patients with circumscribed temporopolar and temporobasal lesions in order to identify specific features that might differentiate them from seizures that originate in other temporal areas. Among 172 patients with temporal lobe seizures registered in our epilepsy unit in the last 15 years, 15 (8.7%) patients had seizures caused by temporopolar or anterior temporobasal lesions (11 left-sided lesions). The main finding in our study is that patients with left-sided lesions had aphasia during their seizures as the most prominent feature. In addition, while all patients showed normal to high intellectual functioning in standard neuropsychological testing, semantic impairment was found in a subset of 9 patients with left-sided lesions. This case series demonstrates that aphasic seizures without impairment of consciousness can result from small, circumscribed left anterior temporobasal and temporopolar lesions. Thus, the presence of speech manifestation during seizures should prompt detailed assessment of the structural integrity of the basal surface of the temporal lobe in addition to the evaluation of primary language areas.
Resumo:
The analysis of the interdependence between time series has become an important field of research in the last years, mainly as a result of advances in the characterization of dynamical systems from the signals they produce, the introduction of concepts such as generalized and phase synchronization and the application of information theory to time series analysis. In neurophysiology, different analytical tools stemming from these concepts have added to the ?traditional? set of linear methods, which includes the cross-correlation and the coherency function in the time and frequency domain, respectively, or more elaborated tools such as Granger Causality. This increase in the number of approaches to tackle the existence of functional (FC) or effective connectivity (EC) between two (or among many) neural networks, along with the mathematical complexity of the corresponding time series analysis tools, makes it desirable to arrange them into a unified, easy-to-use software package. The goal is to allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of these analysis methods from a single integrated toolbox. Here we present HERMES (http://hermes.ctb.upm.es), a toolbox for the Matlab® environment (The Mathworks, Inc), which is designed to study functional and effective brain connectivity from neurophysiological data such as multivariate EEG and/or MEG records. It includes also visualization tools and statistical methods to address the problem of multiple comparisons. We believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis.
Resumo:
In this work, we present a study whose objective is to prove the influence of background noise produced inside university facilities on the brain waves related to attention processes. Recordings of background noise were carried out in study areas inside university facilities. Volunteers were asked to perform an attention test without any background noise but also while being exposed to the sound recordings, and their cerebral activity was recorded through electroencephalography (EEG). After the application of the test in both conditions, changes in the frequency bands related to attention processes (beta 13-30 Hz and theta 4-7 Hz) were studied. The results of this study show that when the students were performing the test while being exposed to background noise, both beta and theta frequency bands decreased statistically significantly. Because attentional improvement is related to increases of the beta and theta waves, we believe that those decreases are directly related to a lack of attention caused by the exposure to background noise. Nevertheless, the results do not allow us to conclude that background noise produced inside university facilities has an influence on the attentional processes.
Resumo:
Averaged event-related potential (ERP) data recorded from the human scalp reveal electroencephalographic (EEG) activity that is reliably time-locked and phase-locked to experimental events. We report here the application of a method based on information theory that decomposes one or more ERPs recorded at multiple scalp sensors into a sum of components with fixed scalp distributions and sparsely activated, maximally independent time courses. Independent component analysis (ICA) decomposes ERP data into a number of components equal to the number of sensors. The derived components have distinct but not necessarily orthogonal scalp projections. Unlike dipole-fitting methods, the algorithm does not model the locations of their generators in the head. Unlike methods that remove second-order correlations, such as principal component analysis (PCA), ICA also minimizes higher-order dependencies. Applied to detected—and undetected—target ERPs from an auditory vigilance experiment, the algorithm derived ten components that decomposed each of the major response peaks into one or more ICA components with relatively simple scalp distributions. Three of these components were active only when the subject detected the targets, three other components only when the target went undetected, and one in both cases. Three additional components accounted for the steady-state brain response to a 39-Hz background click train. Major features of the decomposition proved robust across sessions and changes in sensor number and placement. This method of ERP analysis can be used to compare responses from multiple stimuli, task conditions, and subject states.
Resumo:
Although weightlessness is known to affect living cells, the manner by which this occurs is unknown. Some reaction-diffusion processes have been theoretically predicted as being gravity-dependent. Microtubules, a major constituent of the cellular cytoskeleton, self-organize in vitro by way of reaction-diffusion processes. To investigate how self-organization depends on gravity, microtubules were assembled under low gravity conditions produced during space flight. Contrary to the samples formed on an in-flight 1 × g centrifuge, the samples prepared in microgravity showed almost no self-organization and were locally disordered.
Resumo:
As a measure of dynamical structure, short-term fluctuations of coherence between 0.3 and 100 Hz in the electroencephalogram (EEG) of humans were studied from recordings made by chronic subdural macroelectrodes 5-10 mm apart, on temporal, frontal, and parietal lobes, and from intracranial probes deep in the temporal lobe, including the hippocampus, during sleep, alert, and seizure states. The time series of coherence between adjacent sites calculated every second or less often varies widely in stability over time; sometimes it is stable for half a minute or more. Within 2-min samples, coherence commonly fluctuates by a factor up to 2-3, in all bands, within the time scale of seconds to tens of seconds. The power spectrum of the time series of these fluctuations is broad, extending to 0.02 Hz or slower, and is weighted toward the slower frequencies; little power is faster than 0.5 Hz. Some records show conspicuous swings with a preferred duration of 5-15s, either irregularly or quasirhythmically with a broad peak around 0.1 Hz. Periodicity is not statistically significant in most records. In our sampling, we have not found a consistent difference between lobes of the brain, subdural and depth electrodes, or sleeping and waking states. Seizures generally raise the mean coherence in all frequencies and may reduce the fluctuations by a ceiling effect. The coherence time series of different bands is positively correlated (0.45 overall); significant nonindependence extends for at least two octaves. Coherence fluctuations are quite local; the time series of adjacent electrodes is correlated with that of the nearest neighbor pairs (10 mm) to a coefficient averaging approximately 0.4, falling to approximately 0.2 for neighbors-but-one (20 mm) and to < 0.1 for neighbors-but-two (30 mm). The evidence indicates fine structure in time and space, a dynamic and local determination of this measure of cooperativity. Widely separated frequencies tending to fluctuate together exclude independent oscillators as the general or usual basis of the EEG, although a few rhythms are well known under special conditions. Broad-band events may be the more usual generators. Loci only a few millimeters apart can fluctuate widely in seconds, either in parallel or independently. Scalp EEG coherence cannot be predicted from subdural or deep recordings, or vice versa, and intracortical microelectrodes show still greater coherence fluctuation in space and time. Widely used computations of chaos and dimensionality made upon data from scalp or even subdural or depth electrodes, even when reproducible in successive samples, cannot be considered representative of the brain or the given structure or brain state but only of the scale or view (receptive field) of the electrodes used. Relevant to the evolution of more complex brains, which is an outstanding fact of animal evolution, we believe that measures of cooperativity are likely to be among the dynamic features by which major evolutionary grades of brains differ.
Resumo:
Tese de mestrado integrado em Engenharia Biomédica e Biofísica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2016
Resumo:
Background: Deception can distort psychological tests on socially sensitive topics. Understanding the cerebral processes that are involved in such faking can be useful in detection and prevention of deception. Previous research shows that faking a brief implicit association test (BIAT) evokes a characteristic ERP response. It is not yet known whether temporarily available self-control resources moderate this response. We randomly assigned 22 participants (15 females, 24.23 ± 2.91 years old) to a counterbalanced repeated-measurements design. Participants first completed a Brief-IAT (BIAT) on doping attitudes as a baseline measure and were then instructed to fake a negative doping attitude both when self-control resources were depleted and non-depleted. Cerebral activity during BIAT performance was assessed using high-density EEG. Results: Compared to the baseline BIAT, event-related potentials showed a first interaction at the parietal P1, while significant post hoc differences were found only at the later occurring late positive potential. Here, significantly decreased amplitudes were recorded for ‘normal’ faking, but not in the depletion condition. In source space, enhanced activity was found for ‘normal’ faking in the bilateral temporoparietal junction. Behaviorally, participants were successful in faking the BIAT successfully in both conditions. Conclusions: Results indicate that temporarily available self-control resources do not affect overt faking success on a BIAT. However, differences were found on an electrophysiological level. This indicates that while on a phenotypical level self-control resources play a negligible role in deliberate test faking the underlying cerebral processes are markedly different. Electronic supplementary material: The online version of this article (doi:10.1186/s12868-016-0249-8) contains supplementary material, which is available to authorized users.
Resumo:
Background: Although there is evidence that post-mortem interval (PMI) is not a major contributor to reduced overall RNA integrity, it may differentially affect a subgroup of gene transcripts that are susceptible to PMI-related degradation. This would particularly have ramifications for microarray studies that include a broad spectrum of genes. Method: Brain tissue was removed from adult mice at 0, 6, 12, 18, 24,36 and 48 h post-mortem. RNA transcript abundance was measured by hybridising RNA from the zero time point with test RNA from each PMI time point, and differential gene expression was assessed using cDNA microarrays. Sequence and ontological analyses were performed on the group of RNA transcripts showing greater than two-fold reduction. Results: Increasing PMI was associated with decreased tissue pH and increased RNA degradation as indexed by 28S/18S ribosomal RNA ratio. Approximately 12% of mRNAs detected on the arrays displayed more than a two-fold decrease in abundance by 48 It post-mortem. An analysis of nucleotide composition provided evidence that transcripts with the AUUUA motif in the 3' untranslated region (3'UTR) were more susceptible to PMI-related RNA degradation, compared to transcripts not carrying the 3'UTR AUUUA motif. Consistent with this finding, ontological analysis showed transcription factors and elements to be over-represented in the group of transcripts susceptible to degradation. Conclusion: A subgroup of mammalian mRNA transcripts are particularly susceptible to PMI-related degradation, and as a group, they are more likely to carry the YUTR AUUUA motif. PMI should be controlled for in human and animal model post-mortem brain studies, particularly those including a broad spectrum of mRNA transcripts. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In 2002, we published a paper [Brock, J., Brown, C., Boucher, J., Rippon, G., 2002. The temporal binding deficit hypothesis of autism. Development and Psychopathology 142, 209-224] highlighting the parallels between the psychological model of 'central coherence' in information processing [Frith, U., 1989. Autism: Explaining the Enigma. Blackwell, Oxford] and the neuroscience model of neural integration or 'temporal binding'. We proposed that autism is associated with abnormalities of information integration that is caused by a reduction in the connectivity between specialised local neural networks in the brain and possible overconnectivity within the isolated individual neural assemblies. The current paper updates this model, providing a summary of theoretical and empirical advances in research implicating disordered connectivity in autism. This is in the context of changes in the approach to the core psychological deficits in autism, of greater emphasis on 'interactive specialisation' and the resultant stress on early and/or low-level deficits and their cascading effects on the developing brain [Johnson, M.H., Halit, H., Grice, S.J., Karmiloff-Smith, A., 2002. Neuroimaging of typical and atypical development: a perspective from multiple levels of analysis. Development and Psychopathology 14, 521-536].We also highlight recent developments in the measurement and modelling of connectivity, particularly in the emerging ability to track the temporal dynamics of the brain using electroencephalography (EEG) and magnetoencephalography (MEG) and to investigate the signal characteristics of this activity. This advance could be particularly pertinent in testing an emerging model of effective connectivity based on the balance between excitatory and inhibitory cortical activity [Rubenstein, J.L., Merzenich M.M., 2003. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes, Brain and Behavior 2, 255-267; Brown, C., Gruber, T., Rippon, G., Brock, J., Boucher, J., 2005. Gamma abnormalities during perception of illusory figures in autism. Cortex 41, 364-376]. Finally, we note that the consequence of this convergence of research developments not only enables a greater understanding of autism but also has implications for prevention and remediation. © 2006.
Resumo:
Our aim was to identify early predictors of poor neurodevelopmental outcome and of subsequent epilepsy in very early preterm and late preterm newborns with neonatal seizures.
Resumo:
We propose a novel electroencephalographic application of a recently developed cerebral source extraction method (Functional Source Separation, FSS), which starts from extracranial signals and adds a functional constraint to the cost function of a basic independent component analysis model without requiring solutions to be independent. Five ad-hoc functional constraints were used to extract the activity reflecting the temporal sequence of sensory information processing along the somatosensory pathway in response to the separate left and right median nerve galvanic stimulation. Constraints required only the maximization of the responsiveness at specific latencies following sensory stimulation, without taking into account that any frequency or spatial information. After source extraction, the reliability of identified FS was assessed based on the position of single dipoles fitted on its retroprojected signals and on a discrepancy measure. The FS positions were consistent with previously reported data (two early subcortical sources localized in the brain stem and thalamus, the three later sources in cortical areas), leaving negligible residual activity at the corresponding latencies. The high-frequency component of the oscillatory activity (HFO) of the extracted component was analyzed. The integrity of the low amplitude HFOs was preserved for each FS. On the basis of our data, we suggest that FSS can be an effective tool to investigate the HFO behavior of the different neuronal pools, recruited at successive times after median nerve galvanic stimulation. As FSs are reconstructed along the entire experimental session, directional and dynamic HFO synchronization phenomena can be studied.
Resumo:
If, as is widely believed, schizophrenia is characterized by abnormalities of brain functional connectivity, then it seems reasonable to expect that different subtypes of schizophrenia could be discriminated in the same way. However, evidence for differences in functional connectivity between the subtypes of schizophrenia is largely lacking and, where it exists, it could be accounted for by clinical differences between the patients (e.g. medication) or by the limitations of the measures used. In this study, we measured EEG functional connectivity in unmedicated male patients diagnosed with either positive or negative syndrome schizophrenia and compared them with age and sex matched healthy controls. Using new methodology (Medkour et al., 2009) based on partial coherence, brain connectivity plots were constructed for positive and negative syndrome patients and controls. Reliable differences in the pattern of functional connectivity were found with both syndromes showing not only an absence of some of the connections that were seen in controls but also the presence of connections that the controls did not show. Comparing connectivity graphs using the Hamming distance, the negative-syndrome patients were found to be more distant from the controls than were the positive syndrome patients. Bootstrap distributions of these distances were created which showed a significant difference in the mean distances that was consistent with the observation that negative-syndrome diagnosis is associated with a more severe form of schizophrenia. We conclude that schizophrenia is characterized by widespread changes in functional connectivity with negative syndrome patients showing a more extreme pattern of abnormality than positive syndrome patients.
Resumo:
Contradiction is a cornerstone of human rationality, essential for everyday life and communication. We investigated electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) in separate recording sessions during contradictory judgments, using a logical structure based on categorical propositions of the Aristotelian Square of Opposition (ASoO). The use of ASoO propositions, while controlling for potential linguistic or semantic confounds, enabled us to observe the spatial temporal unfolding of this contradictory reasoning. The processing started with the inversion of the logical operators corresponding to right middle frontal gyrus (rMFG-BA11) activation, followed by identification of contradictory statement associated with in the right inferior frontal gyrus (rIFG-BA47) activation. Right medial frontal gyrus (rMeFG, BA10) and anterior cingulate cortex (ACC, BA32) contributed to the later stages of process. We observed a correlation between the delayed latency of rBA11 response and the reaction time delay during inductive vs. deductive reasoning. This supports the notion that rBA11 is crucial for manipulating the logical operators. Slower processing time and stronger brain responses for inductive logic suggested that examples are easier to process than general principles and are more likely to simplify communication. © 2014 Porcaro et al.