990 resultados para ECR ion source
Resumo:
A global, time-dependent, three-dimensional, coupled ionosphere-thermosphere model is used to predict the spatial distribution of non-thermal plasma in the F-layer. It is shown that, even for steady-state conditions with Kp as low as 3, the difference between the ion and neutral velocities often exceeds the neutral thermal speed by a factor, D', which can be as large as 4. Theoretically, highly non-Maxwellian, and probably toroidal, ion velocity distributions are expected when D' exceeds about 1.5. The lack of response of the neutral winds to sunward ion drifts in the dawn sector of the auroral oval cause this to be the region most likely to contain toroidal distributions. The maximum in D' is found in the throat region of the convection pattern, where the strong neutral winds of the afternoon sector meet the eastward ion flows of the morning sector. These predictions are of interest, not only to radar scientists searching for non-thermal ionospheric plasma, but also as one possible explanation of the initial heating and upward flows of ions in the cleft ion fountain and nightside auroral oval, both of which are a major source of plasma for the magnetosphere.
Resumo:
NASA's Dynamics Explorer (DE) mission was designed to study the coupling between the Earth's magnetosphere, ionosphere and neutral thermosphere1. One area of major interest is the outflow of ionospheric plasma into the magnetosphere, the scale and significance of which is only now becoming apparent with the advent of mass-resolving, low-energy ion detectors. Here we compare observations of ion flows in the polar magnetosphere, made by the retarding ion mass spectrometer (RIMS)2 on DE1, with those made simultaneously in the topside ionosphere by the ion drift meter (IDM)3 on the lower-altitude DE2 spacecraft. The results show the dayside auroral ionosphere to be a significant and highly persistent source of plasma for the magnetosphere. The upwelling ionospheric ions are spatially dispersed, according to both their energy and mass, by the combined actions of the geomagnetic field and the dawn-to-dusk convection electric field, in an effect analogous to the operation of an ion mass spectrometer.
Resumo:
The transport of ionospheric ions from a source in the polar cleft ionosphere through the polar magnetosphere is investigated using a two-dimensional, kinetic, trajectory-based code. The transport model includes the effects of gravitation, longitudinal magnetic gradient force, convection electric fields, and parallel electric fields. Individual ion trajectories as well as distribution functions and resulting bulk parameters of density, parallel average energy, and parallel flux for a presumed cleft ionosphere source distribution are presented for various conditions to illustrate parametrically the dependences on source energies, convection electric field strengths, ion masses, and parallel electric field strengths. The essential features of the model are consistent with the concept of a cleft-based ion fountain supplying ionospheric ions to the polar magnetosphere, and the resulting plasma distributions and parameters are in general agreement with recent low-energy ion measurements from the DE 1 satellite.
Resumo:
The retarding ion mass spectrometer on the Dynamics Explorer 1 spacecraft has generated a unique data set which documents, among other things, the occurrence of non-Maxwellian superthermal features in the auroral topside ionosphere distribution functions. In this paper, we provide a representative sampling of the observed features and their spatial morphology as observed at altitudes in the range from a few thousand kilometers to a few earth radii. At lower altitudes, these features appear at auroral latitudes separating regions of polar cap and subauroral light ion polar wind. The most common signature is the appearance of an upgoing energetic tail having conical lobes representing significant ion heat and number flux in all species, including O+. Transverse ion heating below the observation point at several thousand kilometers is clearly associated with O+ outflows. In some events observed, transverse acceleration apparently involves nearly the entire thermal plasma, the distribution function becomes highly anisotropic with T⊥ > T∥, and may actually develop a minimum at zero velocity, i.e., become a torus having as its axis the local magnetic field direction. At higher altitudes, the localized dayside source region appears as a field aligned flow which is dispersed tailward across the polar cap according to parallel velocity by antisunward convective flow, so that upflowing low energy O+ ions appear well within the polar cap region. While this flow can appear beamlike in a given location, the energy dispersion observed implies a very broad energy distribution at the source, extending from a few tenths of an eV to in excess of 50 eV. On the nightside, upgoing ion beams are found to be latitudinally bounded by regions of ion conics whose half angles increase with increasing separation from the beam region, indicating low altitude transverse acceleration in immediate proximity to, and below, the parallel acceleration region. These observations reveal a clear distinction between classical polar wind ion outflow and O+ enhanced superthermal flows, and confirm the importance of low altitude transverse acceleration in ionospheric plasma transport, as suggested by previous observations.
Resumo:
Linear theory, model ion-density profiles and MSIS neutral thermospheric predictions are used to investigate the stability of the auroral, topside ionosphere to oxygen cyclotron waves: variations of the critical height, above which the plasma is unstable, with field-aligned current, thermal ion density and exospheric temperature are considered. In addition, probabilities are assessed that interactions with neutral atomic gases prevent O+ ions from escaping into the magnetosphere after they have been transversely accelerated by these waves. The two studies are combined to give a rough estimate of the total O+ escape flux as a function of the field-aligned current density for an assumed rise in the perpendicular ion temperature. Charge exchange with neutral oxygen, not hydrogen, is shown to be the principle limitation to the escape of O+ ions, which occurs when the waves are driven unstable down to low altitudes. It is found that the largest observed field-aligned current densities can heat a maximum of about 5×1014 O+ ions m−2 to a threshold above which they are subsequently able to escape into the magnetosphere in the following 500s. Averaged over this period, this would constitute a flux of 1012 m−2 s−1 and in steady-state the peak outflow would then be limited to about 1013 m−2 s−1 by frictional drag on thermal O+ at lower altitudes. Maximum escape is at low plasma density unless the O+ scale height is very large. The outflow decreases with decreasing field-aligned current density and, to a lesser extent, with increasing exospheric temperature. Upward flowing ion events are evaluated as a source of O+ ions for the magnetosphere and as an explanation of the observed solar cycle variation of ring current O+ abundance.
Resumo:
We report simultaneous global monitoring of a patch of ionization and in situ observation of ion upflow at the center of the polar cap region during a geomagnetic storm. Our observations indicate strong fluxes of upwelling O+ ions originating from frictional heating produced by rapid antisunward flow of the plasma patch. The statistical results from the crossings of the central polar cap region by Defense Meteorological Satellite Program F16–F18 from 2010 to 2013 confirm that the field-aligned flow can turn upward when rapid antisunward flows appear, with consequent significant frictional heating of the ions, which overcomes the gravity effect. We suggest that such rapidly moving patches can provide an important source of upwelling ions in a region where downward flows are usually expected. These observations give new insight into the processes of ionosphere-magnetosphere coupling.
Resumo:
The authors present here a summary of their investigations of ultrathin films formed by gold nanoclusters embedded in polymethylmethacrylate polymer. The clusters are formed from the self-organization of subplantated gold ions in the polymer. The source of the low energy ion stream used for the subplantation is a unidirectionally drifting gold plasma created by a magnetically filtered vacuum arc plasma gun. The material properties change according to subplantation dose, including nanocluster sizes and agglomeration state and, consequently also the material electrical behavior and optical activity. They have investigated the composite experimentally and by computer simulation in order to better understand the self-organization and the properties of the material. They present here the results of conductivity measurements and percolation behavior, dynamic TRIM simulations, surface plasmon resonance activity, transmission electron microscopy, small angle x-ray scattering, atomic force microscopy, and scanning tunneling microscopy. (C) 2010 American Vacuum Society [DOI: 10.1116/1.3357287]
Resumo:
Aminoacetone (AA), triose phosphates, and acetone are putative endogenous sources of potentially cytotoxic and genotoxic methylglyoxal (MG), which has been reported to be augmented in the plasma of diabetic patients. In these patients, accumulation of MG derived from aminoacetone, a threonine and glycine catabolite, is inferred from the observed concomitant endothelial overexpression of circulating semicarbazide-sensitive amine oxidases. These copper-dependent enzymes catalyze the oxidation of primary amines, such as AA and methylamine, by molecular oxygen, to the corresponding aldehydes, NH4+ ion and H2O2. We recently reported that AA aerobic oxidation to MG also takes place immediately upon addition of catalytic amounts of copper and iron ions. Taking into account that (i) MG and H2O2 are reportedly cytotoxic to insulin-producing cell lineages such as RINm5f and that (ii) the metal-catalyzed oxidation of AA is propagated by O-2(center dot-) radical anion, we decided to investigate the possible pro-oxidant action of AA on these cells taken here as a reliable model system for pancreatic beta-cells. Indeed, we show that AA (0.10-5.0 mM) administration to RINm5f cultures induces cell death. Ferrous (50-300 mu M) and Fe3+ ion (100 mu M) addition to the cell cultures had no effect, whereas Cu2+ (5.0-100 mu M) significantly increased cell death. Supplementation of the AA- and Cu2+-containing culture medium with antioxidants, such as catalase (5.0 mu M), superoxide dismutase (SOD, 50 U/mL), and N-acetylcysteine (NAC, 5.0 mM) led to partial protection. mRNA expression of MnSOD, CuZnSOD, glutathione peroxidase, and glutathione reductase, but not of catalase, is higher in cells treated with AA (0.50-1.0 mM) plus Cu2+ ions (10-50 mu M) relative to control cultures. This may imply higher activity of antioxidant enzymes C, in RINm5f AA-treated cells. In addition, we have found that AA (0.50-1.0 mM) Plus Cu2+ (100 mu M) (i) increase RINm5f cytosolic calcium; (ii) promote DNA fragmentation; and (iii) increase the pro-apoptotic (Bax)/antiapoptotic (Bcl-2) ratio at the level of mRNA expression. In conclusion, although both normal and pathological concentrations of AA are probably much lower than those used here, it is tempting to propose that excess AA in diabetic patients may drive oxidative damage and eventually the death of pancreatic beta-cells.
Resumo:
In this work, it was used a plasma system composed of a cylindrical stainless steel reactor, a radio-frequency (13.56MHz) power source fixed at either 25 W or 70 W, a power source with a negative bias of 10kV and a 100Hz pulse. The system worked at an operational pressure of 80mTorr which consisted of varying concentrations of the monomer HMDSN and gaseous nitrogen in ratios: HMDSN (mTorr)/nitrogen (mTorr) from 70/10 to 20/60 in terms of operational pressure. The structural characterization of the films was done by FTIR spectroscopy. Absorptions were observed between 3500 cm(-1) to 3200 cm(-1), 3000 cm(-1) to 2900 cm(-1), 2500 cm(-1) to 2000 cm(-1), 1500 cm(-1) to 700 cm(-1), corresponding, respectively, to OH radicals, C-H stretching bonds in CH2 and CH3 molecules, C-N bonds, and finally, strain C-H bonds, Si-CH3 and Si-N groups, for both the 70 W and the 25 W. The contact angle for water was approximately 100 degrees and the surface energy is near 25mJ/m(2) which represents a hydrophobic surface, measured by goniometric method. The aging of the film was also analyzed by measuring the contact angle over a period of time. The stabilization was observed after 4 weeks. The refractive index of these materials presents values from 1.73 to 1.65 measured by ultraviolet-visible technique.
Resumo:
Sphingomyelinases D (SMases D) from Loxosceles spider venom are the principal toxins responsible for the manifestation of dermonecrosis, intravascular hemolysis, and acute renal failure, which can result in death. These enzymes catalyze the hydrolysis of sphingomyelin, resulting in the formation of ceramide 1-phosphate and choline or the hydrolysis of lysophosphatidyl choline, generating the lipid mediator lysophosphatidic acid. This report represents the first crystal structure of a member of the sphingomyelinase D family from Loxosceles laeta (SMase I), which has been determined at 1.75-angstrom resolution using the quick cryo-soaking technique and phases obtained from a single iodine derivative and data collected from a conventional rotating anode x-ray source. SMase I folds as an (alpha/beta)(8) barrel, the interfacial and catalytic sites encompass hydrophobic loops and a negatively charged surface. Substrate binding and/or the transition state are stabilized by a Mg2+ ion, which is coordinated by Glu(32), Asp(34), Asp(91), and solvent molecules. In the proposed acid base catalytic mechanism, His(12) and His(47) play key roles and are supported by a network of hydrogen bonds between Asp(34), Asp(52), Trp(230), Asp(233), and Asn(252).
Resumo:
Heavy-ion collisions at ultrarelativistic energies may be used as a powerful source of photons and pomerons. We compute the rates for pseudoscalar meson production through two-photon and two-pomeron scattering, at energies that will be available at RHIC and LHC. Light mesons will mostly be produced by pomeron fusion at large rates, the two processes are comparable for charmed mesons, while electromagnetic production will be dominant for bottom mesons. We discuss the possibility of observing the reaction gammagamma(PP) --> R --> gammagamma, and comment on the particular case where R could be a scalar resonance at 650 MeV.
Resumo:
Baccharis dracunculifolia DC (Asteraceae) is the main botanical source used by honeybees to produce Brazilian green propolis whose hepatoprotective properties have been already described. In this work we investigated the protective effects of the glycolic extract of B. dracunculifolia (GEBd) against oxidative stress in isolated rat liver mitochondria (RLM). The GEBd was prepared by fractionated percolation using propylene glycol as solvent. The total phenols and flavonoids, which are substances with recognized antioxidant action, were quantified in GEBd and the phytochemical analysis was carried out by HPLC. GEBd exhibited significant scavenger activity towards DPPH radicals and superoxide anions in a concentration-dependent manner, and also a Fe 2+ chelating activity. GEBd decreased the basal H 2O 2 generation and the Fe 2+- or t-BuOOH-induced ROS production in isolated mitochondria. Lipid oxidation of mitochondrial membranes, protein thiol groups and GSH oxidation were also prevented by GEBd. This shows that B. dracunculifolia exhibit potent antioxidant activity protecting liver mitochondria against oxidative damage and such action probably contribute to the antioxidant and hepatoprotective effects of green propolis. © 2011 Elsevier Ltd.
Resumo:
Plasma immersion ion implantation (PIII) process is a three dimensional surface modification method that is quite mature and well known to the surface engineering community nowadays, especially to those working in the field of plasma-materials interaction, aiming at both industrial and academic applications. More recently, deposition methods have been added to PIII, the PIII&D, opening possibilities of broader range of applications of these techniques. So, PIII&D is becoming a routine method of surface modification, with the advantage of pushing up the retained dose levels limited by the sputtering due to ion implantation. Therefore, well adherent, thick, three-dimensional films without stress are possible to be achieved, at relatively low cost, using PIII&D. In this paper, we will discuss about a few PIII and PIII&D experiments that have been performed recently to achieve surface improvements in different materials: 1 - high temperature nitrogen PIII in Ti6Al4V alloy in which a deep nitrogen rich treated layer resulted in surface improvements as increase of hardness, corrosion resistance and resistance to wear of the Ti alloy; 2 - nanostructures in ZnO films, obtained by PIII&D of vaporized & ionized Zn source; 3 - combined implantation and deposition of calcium for biomaterial activity of Ti alloy (PIII&D), allowing the growth of hydroxyapatite in a body solution; 4 - magnetron sputtering deposition of Cr that was enhanced by the glow discharge Ar plasma to allow implantation and deposition of Cr on SAE 1070 steel (PIII&D) resulting in surfaces with high resistance to corrosion; and 5 - implantation of nitrogen by ordinary PIII into this Cr film, which improved resistance to corrosion, while keeping the tribological properties as good as for the SAE 1070 steel surface. © 2012 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The photochemical cis-trans isomerization of the 4-{4-[2-(pyridin-4-yl)ethenyl]phenyl}-2,2': 6',2''-terpyridine ligand (vpytpy) was investigated by UV-vis, NMR and TWIM-MS. Ion mobility mass spectrometry was performed pursuing the quantification of the isomeric composition during photolysis, however an in-source trans-to-cis isomerization process was observed. In order to overcome this inherent phenomenon, the isomerization of the vpytpy species was suppressed by complexation, reacting with iron(II) ions, and forming the [Fe(vpytpy)(2)](2+) complex. The strategy of "freezing" the cis-trans isomerizable ligand at a given geometric conformation was effective, preventing further isomerization, thus allowing the distinction of each one of the isomers in the photolysed mixture. In addition, the experimental drift times were related to the calculated surface areas of the three possible cis-cis, cis-trans and trans-trans iron(II) complex isomers. The stabilization of the ligand in a given conformation also allows us to obtain the cis-cis and cis-trans complexes exhibiting the ligand in the metastable cis-conformation, as well as in the thermodynamically stable trans-conformation.