942 resultados para Dynamic storage allocation (Computer science)
Resumo:
Regenerating codes are a class of codes for distributed storage networks that provide reliability and availability of data, and also perform efficient node repair. Another important aspect of a distributed storage network is its security. In this paper, we consider a threat model where an eavesdropper may gain access to the data stored in a subset of the storage nodes, and possibly also, to the data downloaded during repair of some nodes. We provide explicit constructions of regenerating codes that achieve information-theoretic secrecy capacity in this setting.
Resumo:
In this paper, we present a novel approach that makes use of topic models based on Latent Dirichlet allocation(LDA) for generating single document summaries. Our approach is distinguished from other LDA based approaches in that we identify the summary topics which best describe a given document and only extract sentences from those paragraphs within the document which are highly correlated given the summary topics. This ensures that our summaries always highlight the crux of the document without paying any attention to the grammar and the structure of the documents. Finally, we evaluate our summaries on the DUC 2002 Single document summarization data corpus using ROUGE measures. Our summaries had higher ROUGE values and better semantic similarity with the documents than the DUC summaries.
Resumo:
Accurate and timely prediction of weather phenomena, such as hurricanes and flash floods, require high-fidelity compute intensive simulations of multiple finer regions of interest within a coarse simulation domain. Current weather applications execute these nested simulations sequentially using all the available processors, which is sub-optimal due to their sub-linear scalability. In this work, we present a strategy for parallel execution of multiple nested domain simulations based on partitioning the 2-D processor grid into disjoint rectangular regions associated with each domain. We propose a novel combination of performance prediction, processor allocation methods and topology-aware mapping of the regions on torus interconnects. Experiments on IBM Blue Gene systems using WRF show that the proposed strategies result in performance improvement of up to 33% with topology-oblivious mapping and up to additional 7% with topology-aware mapping over the default sequential strategy.
Resumo:
We study the problem of analyzing influence of various factors affecting individual messages posted in social media. The problem is challenging because of various types of influences propagating through the social media network that act simultaneously on any user. Additionally, the topic composition of the influencing factors and the susceptibility of users to these influences evolve over time. This problem has not been studied before, and off-the-shelf models are unsuitable for this purpose. To capture the complex interplay of these various factors, we propose a new non-parametric model called the Dynamic Multi-Relational Chinese Restaurant Process. This accounts for the user network for data generation and also allows the parameters to evolve over time. Designing inference algorithms for this model suited for large scale social-media data is another challenge. To this end, we propose a scalable and multi-threaded inference algorithm based on online Gibbs Sampling. Extensive evaluations on large-scale Twitter and Face book data show that the extracted topics when applied to authorship and commenting prediction outperform state-of-the-art baselines. More importantly, our model produces valuable insights on topic trends and user personality trends beyond the capability of existing approaches.
Resumo:
In this paper, we propose a novel authentication protocol for MANETs requiring stronger security. The protocol works on a two-tier network architecture with client nodes and authentication server nodes, and supports dynamic membership. We use an external membership granting server (MGS) to provide stronger security with dynamic membership. However, the external MGS in our protocol is semi-online instead of being online, i.e., the MGS cannot initiate a connection with a network node but any network node can communicate with the MGS whenever required. To ensure efficiency, the protocol uses symmetric key cryptography to implement the authentication service. However, to achieve storage scalability, the protocol uses a pseudo random function (PRF) to bind the secret key of a client to its identity using the secret key of its server. In addition, the protocol possesses an efficient server revocation mechanism along with an efficient server re-assignment mechanism, which makes the protocol robust against server node compromise.
Resumo:
Many meteorological phenomena occur at different locations simultaneously. These phenomena vary temporally and spatially. It is essential to track these multiple phenomena for accurate weather prediction. Efficient analysis require high-resolution simulations which can be conducted by introducing finer resolution nested simulations, nests at the locations of these phenomena. Simultaneous tracking of these multiple weather phenomena requires simultaneous execution of the nests on different subsets of the maximum number of processors for the main weather simulation. Dynamic variation in the number of these nests require efficient processor reallocation strategies. In this paper, we have developed strategies for efficient partitioning and repartitioning of the nests among the processors. As a case study, we consider an application of tracking multiple organized cloud clusters in tropical weather systems. We first present a parallel data analysis algorithm to detect such clouds. We have developed a tree-based hierarchical diffusion method which reallocates processors for the nests such that the redistribution cost is less. We achieve this by a novel tree reorganization approach. We show that our approach exhibits up to 25% lower redistribution cost and 53% lesser hop-bytes than the processor reallocation strategy that does not consider the existing processor allocation.
Resumo:
We present in this paper a new algorithm based on Particle Swarm Optimization (PSO) for solving Dynamic Single Objective Constrained Optimization (DCOP) problems. We have modified several different parameters of the original particle swarm optimization algorithm by introducing new types of particles for local search and to detect changes in the search space. The algorithm is tested with a known benchmark set and compare with the results with other contemporary works. We demonstrate the convergence properties by using convergence graphs and also the illustrate the changes in the current benchmark problems for more realistic correspondence to practical real world problems.
Resumo:
Task-parallel languages are increasingly popular. Many of them provide expressive mechanisms for intertask synchronization. For example, OpenMP 4.0 will integrate data-driven execution semantics derived from the StarSs research language. Compared to the more restrictive data-parallel and fork-join concurrency models, the advanced features being introduced into task-parallelmodels in turn enable improved scalability through load balancing, memory latency hiding, mitigation of the pressure on memory bandwidth, and, as a side effect, reduced power consumption. In this article, we develop a systematic approach to compile loop nests into concurrent, dynamically constructed graphs of dependent tasks. We propose a simple and effective heuristic that selects the most profitable parallelization idiom for every dependence type and communication pattern. This heuristic enables the extraction of interband parallelism (cross-barrier parallelism) in a number of numerical computations that range from linear algebra to structured grids and image processing. The proposed static analysis and code generation alleviates the burden of a full-blown dependence resolver to track the readiness of tasks at runtime. We evaluate our approach and algorithms in the PPCG compiler, targeting OpenStream, a representative dataflow task-parallel language with explicit intertask dependences and a lightweight runtime. Experimental results demonstrate the effectiveness of the approach.
Resumo:
Dynamic analysis techniques have been proposed to detect potential deadlocks. Analyzing and comprehending each potential deadlock to determine whether the deadlock is feasible in a real execution requires significant programmer effort. Moreover, empirical evidence shows that existing analyses are quite imprecise. This imprecision of the analyses further void the manual effort invested in reasoning about non-existent defects. In this paper, we address the problems of imprecision of existing analyses and the subsequent manual effort necessary to reason about deadlocks. We propose a novel approach for deadlock detection by designing a dynamic analysis that intelligently leverages execution traces. To reduce the manual effort, we replay the program by making the execution follow a schedule derived based on the observed trace. For a real deadlock, its feasibility is automatically verified if the replay causes the execution to deadlock. We have implemented our approach as part of WOLF and have analyzed many large (upto 160KLoC) Java programs. Our experimental results show that we are able to identify 74% of the reported defects as true (or false) positives automatically leaving very few defects for manual analysis. The overhead of our approach is negligible making it a compelling tool for practical adoption.
Resumo:
The current day networks use Proactive networks for adaption to the dynamic scenarios. The use of cognition technique based on the Observe, Orient, Decide and Act loop (OODA) is proposed to construct proactive networks. The network performance degradation in knowledge acquisition and malicious node presence is a problem that exists. The use of continuous time dynamic neural network is considered to achieve cognition. The variance in service rates of user nodes is used to detect malicious activity in heterogeneous networks. The improved malicious node detection rates are proved through the experimental results presented in this paper. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
The polyhedral model provides an expressive intermediate representation that is convenient for the analysis and subsequent transformation of affine loop nests. Several heuristics exist for achieving complex program transformations in this model. However, there is also considerable scope to utilize this model to tackle the problem of automatic memory footprint optimization. In this paper, we present a new automatic storage optimization technique which can be used to achieve both intra-array as well as inter-array storage reuse with a pre-determined schedule for the computation. Our approach works by finding statement-wise storage partitioning hyper planes that partition a unified global array space so that values with overlapping live ranges are not mapped to the same partition. Our heuristic is driven by a fourfold objective function which not only minimizes the dimensionality and storage requirements of arrays required for each high-level statement, but also maximizes inter statement storage reuse. The storage mappings obtained using our heuristic can be asymptotically better than those obtained by any existing technique. We implement our technique and demonstrate its practical impact by evaluating its effectiveness on several benchmarks chosen from the domains of image processing, stencil computations, and high-performance computing.
Resumo:
We report a 75dB, 2.8mW, 100Hz-10kHz envelope detector in a 1.5mm 2.8V CMOS technology. The envelope detector performs input-dc-insensitive voltage-to-currentconverting rectification followed by novel nanopower current-mode peak detection. The use of a subthreshold wide- linear-range transconductor (WLR OTA) allows greater than 1.7Vpp input voltage swings. We show theoretically that this optimal performance is technology-independent for the given topology and may be improved only by spending more power. A novel circuit topology is used to perform 140nW peak detection with controllable attack and release time constants. The lower limits of envelope detection are determined by the more dominant of two effects: The first effect is caused by the inability of amplified high-frequency signals to exceed the deadzone created by exponential nonlinearities in the rectifier. The second effect is due to an output current caused by thermal noise rectification. We demonstrate good agreement of experimentally measured results with theory. The envelope detector is useful in low power bionic implants for the deaf, hearing aids, and speech-recognition front ends. Extension of the envelope detector to higher- frequency applications is straightforward if power consumption is inc