968 resultados para Dose-effect relationship
Resumo:
Both experimental and clinical data show evidence of a correlation between elevated blood levels of carcinoembryonic antigen (CEA) and the development of liver metastases from colorectal carcinomas. However, a cause-effect relationship between these two observations has not been demonstrated. For this reason, we developed a new experimental model to evaluate the possible role of circulating CEA in the facilitation of liver metastases. A CEA-negative subclone from the human colon carcinoma cell line CO115 was transfected either with CEA-cDNA truncated at its 3' end by the deletion of 78 base pairs leading to the synthesis of a secreted form of CEA or with a full-length CEA-cDNA leading to the synthesis of the entire CEA molecule linked to the cell surface by a GPI anchor. Transfectants were selected either for their high CEA secretion (clone CO115-2C2 secreting up to 13 microg CEA per 10(6) cells within 72 h) or for their high CEA membrane expression (clone CO115-5F12 expressing up to 1 x 10(6) CEA molecules per cell). When grafted subcutaneously, CO115-2C2 cells gave rise to circulating CEA levels that were directly related to the tumour volume (from 100 to 1000 ng ml(-1) for tumours ranging from 100 to 1000 mm3), whereas no circulating CEA was detectable in CO115 and CO115-5F12 tumour-bearing mice. Three series of nude mice bearing a subcutaneous xenograft from either clone CO115-2C2 or the CO115-5F12 transfectant, or an untransfected CO115 xenograft, were further challenged for induction of experimental liver metastases by intrasplenic injection of three different CEA-expressing human colorectal carcinoma cell lines (LoVo, LS174T or CO112). The number and size of the liver metastases were shown to be independent of the circulating CEA levels induced by the subcutaneous CEA secreting clone (CO115-2C2), but they were directly related to the metastatic properties of the intrasplenically injected tumour cells.
Resumo:
OBJECTIVE: To calculate the variable costs involved with the process of delivering erythropoiesis stimulating agents (ESA) in European dialysis practices. METHODS: A conceptual model was developed to classify the processes and sub-processes followed in the pharmacy (ordering from supplier, receiving/storing/delivering ESA to the dialysis unit), dialysis unit (dose determination, ordering, receipt, registration, storage, administration, registration) and waste disposal unit. Time and material costs were recorded. Labour costs were derived from actual local wages while material costs came from the facilities' accounting records. Activities associated with ESA administration were listed and each activity evaluated to determine if dosing frequency affected the amount of resources required. RESULTS: A total of 21 centres in 8 European countries supplied data for 142 patients (mean) per hospital (range 42-648). Patients received various ESA regimens (thrice-weekly, twice-weekly, once-weekly, once every 2 weeks and once-monthly). Administering ESA every 2 weeks, the mean costs per patient per year for each process and the estimates of the percentage reduction in costs obtainable, respectively, were: pharmacy labour (10.1 euro, 39%); dialysis unit labour (66.0 euro, 65%); dialysis unit materials (4.11 euro, 61%) and waste unit materials (0.43 euro, 49%). LIMITATION: Impact on financial costs was not measured. CONCLUSION: ESA administration has quantifiable labour and material costs which are affected by dosing frequency.
Resumo:
Mycophenolic acid, a selective inhibitor of the de novo synthesis of guanosine nucleotides in T and B lymphocytes, has been proposed to inhibit human immunodeficiency virus (HIV) replication in vitro by depleting the substrate (guanosine nucleotides) for reverse transcriptase. Here we show that mycophenolic acid induced apoptosis and cell death in a large proportion of activated CD4+ T cells, thus indicating that it may inhibit HIV infection in vitro by both virological mechanisms and immunological mechanisms (depletion of the pool of activated CD4+ T lymphocytes). Administration of mycophenolate mophetil, the ester derivate of mycophenolic acid, to HIV-infected subjects treated with anti-retroviral therapy and with undetectable viremia resulted in the reduction of the number of dividing CD4 + and CD8+ T cells and in the inhibition of virus isolation from purified CD4+ T-cell populations. Based on these results, the potential use of mycophenolate mophetil in the treatment of HIV infection deserves further investigation in controlled clinical trials.
Resumo:
We have shown previously that HLA-A*0201 melanoma patients can frequently develop a CTL response to the cancer testis antigen NY-ESO-1. In the present study, we have analyzed in detail the relative antigenicity and in vitro immunogenicity of natural and modified NY-ESO-1 peptide sequences. The results of this analysis revealed that, although suboptimal for binding to the HLA-A*0201 molecule, peptide NY-ESO-1 157-165 is, among natural sequences, very efficiently recognized by specific CTL clones derived from three melanoma patients. In contrast, peptides NY-ESO-1 157-167 and NY-ESO-1 155-163, which bind very strongly to HLA-A*0201, are recognized less efficiently. In agreement with previous data, substitution of peptide NY-ESO-1 157-165 COOH-terminal C with various other amino acids resulted in a significantly increased binding to HLA-A*0201 molecules as well as in an increased CTL recognition, although variable at the clonal level. Among natural peptides, NY-ESO-1 157-165 and NY-ESO-1 157-167 exhibited good in vitro immunogenicity, whereas peptide NY-ESO-1 155-163 was poorly immunogenic. The fine specificity of interaction between peptide NY-ESO-1 C165A, HLA-A*0201, and T-cell receptor was analyzed at the molecular level using a series of variant peptides containing single alanine substitutions. The findings reported here have significant implications for the formulation of NY-ESO-1-based vaccines as well as for the monitoring of either natural or vaccine-induced NY-ESO-1-specific CTL responses in cancer patients.
Resumo:
APO866 inhibits nicotinamide phosphoribosyltransferase (NMPRTase), a key enzyme involved in nicotinamide adenine dinucleotide (NAD) biosynthesis from the natural precursor nicotinamide. Intracellular NAD is essential for cell survival, and NAD depletion resulting from APO866 treatment elicits tumor cell death. Here, we determine the in vitro and in vivo sensitivities of hematologic cancer cells to APO866 using a panel of cell lines (n = 45) and primary cells (n = 32). Most cancer cells (acute myeloid leukemia [AML], acute lymphoblastic leukemia [ALL], mantle cell lymphoma [MCL], chronic lymphocytic leukemia [CLL], and T-cell lymphoma), but not normal hematopoietic progenitor cells, were sensitive to low concentrations of APO866 as measured in cytotoxicity and clonogenic assays. Treatment with APO866 decreased intracellular NAD and adenosine triphosphate (ATP) at 24 hours and 48 to72 hours, respectively. The NAD depletion led to cell death. At 96 hours, APO866-mediated cell death occurred in a caspase-independent mode, and was associated with mitochondrial dysfunction and autophagy. Further, in vivo administration of APO866 as a single agent prevented and abrogated tumor growth in animal models of human AML, lymphoblastic lymphoma, and leukemia without significant toxicity to the animals. The results support the potential of APO866 for treating hematologic malignancies.
Resumo:
Sequence analysis reveals that the Bacillus subtilis 168 tuaABCDEFGH operon encodes enzymes required for the polymerization of teichuronic acid as well as for the synthesis of one of its precursors, the UDP-glucuronate. Mutants deficient in any of the tua genes, grown in batch cultures under conditions of phosphate limitation, were characterized by reduced amounts of uronate in their cell walls. The teichuronic acid operon belongs to the Pho regulon, as phosphate limitation induces its transcription. Placing the tuaABCDEFGH operon under the control of the inducible Pspac promoter allowed its constitutive expression independently of the phosphate concentration in the medium; the level of uronic acid in cell walls was dependent on the concentration of the inducer. Apparently, owing to an interdependence between teichoic and teichuronic acid incorporation into the cell wall, in examined growth conditions, the balance between the two polymers is maintained in order to insure a constant level of the wall negative charge.
Resumo:
Double-strand breaks (DSBs) occur frequently during DNA replication. They are also caused by ionizing radiation, chemical damage or as part of the series of programmed events that occur during meiosis. In yeast, DSB repair requires RAD52, a protein that plays a critical role in homologous recombination. Here we describe the actions of human RAD52 protein in a model system for single-strand annealing (SSA) using tailed (i.e. exonuclease resected) duplex DNA molecules. Purified human RAD52 protein binds resected DSBs and promotes associations between complementary DNA termini. Heteroduplex intermediates of these recombination reactions have been visualized by electron microscopy, revealing the specific binding of multiple rings of RAD52 to the resected termini and the formation of large protein complexes at heteroduplex joints formed by RAD52-mediated annealing.
Resumo:
CD4(+) alpha beta T cells from either normal C57BL/6 (B6) or MHC-II-deficient (A alpha(-/-) or A beta(-/-)) B6 donor mice engrafted into congenic immunodeficient RAG1(-/-) B6 hosts induced an aggressive inflammatory bowel disease (IBD). Furthermore, CD4(+) T cells from CD1d(-/-) knockout (KO) B6 donor mice but not those from MHC-I(-/-) (homozygous transgenic mice deficient for beta(2)-microglobulin) KO B6 mice induced a colitis in RAG(-/-) hosts. Abundant numbers of in vivo activated (CD69(high)CD44(high)CD28(high)) NK1(+) and NK1(-) CD4(+) T cells were isolated from the inflamed colonic lamina propria (cLP) of transplanted mice with IBD that produced large amounts of TNF-alpha and IFN-gamma but low amounts of IL-4 and IL-10. IBD-associated cLP Th1 CD4(+) T cell populations were polyclonal and MHC-II-restricted when derived from normal B6 donor mice, but oligoclonal and apparently MHC-I-restricted when derived from MHC-II-deficient (A alpha(-/-) or A beta(-/-)) B6 donor mice. cLP CD4(+) T cell populations from homozygous transgenic mice deficient for beta(2)-microglobulin KO B6 donor mice engrafted into RAG(-/-) hosts were Th2 and MHC-II restricted. These data indicate that MHC-II-dependent as well as MHC-II-independent CD4(+) T cells can induce a severe and lethal IBD in congenic, immunodeficient hosts, but that the former need the latter to express its IBD-inducing potential.
Resumo:
Chemotherapy-induced anemia in children with cancer is usually of acute onset. To investigate an alternate treatment to transfusion (Tx), we undertook a phase I-II clinical trial of daily administrations of recombinant erythropoietin (rHuEPO). Patients with a hemoglobin (Hgb) value < 75 g/l were treated for 14 days in cohorts of 3 at escalating daily doses of 25, 50, 70, 80, 90, and 100 U/kg respectively. The maximum-tolerated dose was not encountered. Of 18 courses given to 15 children aged 0.5-18 years, 7 (39%) were associated with increased or stable Hgb levels (courses without Tx), while 11 (61%) were terminated by a Tx, without evidence of a dose-response relationship. Changes in mean Hgb levels and absolute reticulocyte counts were paralleled by those of mean white blood cell, platelet, and absolute neutrophil counts during the first 7 days and when the end-points of the study were reached. Numbers of circulating burst-forming units-erythroid remained low throughout courses without Tx. No cumulative increase of serially determined serum EPO levels was observed and serum ferritin levels were elevated in both groups of courses. We conclude that daily administration of rHuEPO were safe but ineffective in our trial. Recovery of chemotherapy-induced myelosuppression appeared to be the rate-limiting factor for the outcome, without evidence of an enhanced stimulation of erythropoiesis. The lack of a proliferative response of specific progenitor cells suggested a mechanism of transient primary resistance to rHuEPO.
Resumo:
OBJECTIVE: Blood-sucking arthropods' salivary glands contain a remarkable diversity of antihemostatics. The aim of the present study was to identify the unique salivary anticoagulant of the sand fly Lutzomyia longipalpis, which remained elusive for decades. METHODS AND RESULTS: Several L. longipalpis salivary proteins were expressed in human embryonic kidney 293 cells and screened for inhibition of blood coagulation. A novel 32.4-kDa molecule, named Lufaxin, was identified as a slow, tight, noncompetitive, and reversible inhibitor of factor Xa (FXa). Notably, Lufaxin's primary sequence does not share similarity to any physiological or salivary inhibitors of coagulation reported to date. Lufaxin is specific for FXa and does not interact with FX, Dansyl-Glu-Gly-Arg-FXa, or 15 other enzymes. In addition, Lufaxin blocks prothrombinase and increases both prothrombin time and activated partial thromboplastin time. Surface plasmon resonance experiments revealed that FXa binds Lufaxin with an equilibrium constant ≈3 nM, and isothermal titration calorimetry determined a stoichiometry of 1:1. Lufaxin also prevents protease-activated receptor 2 activation by FXa in the MDA-MB-231 cell line and abrogates edema formation triggered by injection of FXa in the paw of mice. Moreover, Lufaxin prevents FeCl(3)-induced carotid artery thrombus formation and prolongs activated partial thromboplastin time ex vivo, implying that it works as an anticoagulant in vivo. Finally, salivary gland of sand flies was found to inhibit FXa and to interact with the enzyme. CONCLUSIONS: Lufaxin belongs to a novel family of slow-tight FXa inhibitors, which display antithrombotic and anti-inflammatory activities. It is a useful tool to understand FXa structural features and its role in prohemostatic and proinflammatory events.
Resumo:
PURPOSE: Corticosteroids have recorded beneficial clinical effects and are widely used in medicine. In ophthalmology, besides their treatment benefits, side effects, including ocular toxicity have been observed especially when intraocular delivery is used. The mechanism of these toxic events remains, however, poorly understood. In our present study, we investigated the mechanisms and potential pathways of corticosteroid-induced retinal cell death. METHODS: Rats were sacrificed 24 h and 8 days after an intravitreous injection of 1 microl (40 microg) of Kenacort Retard. The eyes were processed for ultra structure analysis and detection of activated caspase-3, cytochrome-C, apoptosis-inducing factor (AIF), LEI-L-Dnase II, terminal transferase dUTP nick end labeling (TUNEL), and microtubule-associated protein 1-light chain 3 (MAP-LC3). In vitro, rat retinal pigment epithelial cells (RPE), retinal Müller glial cells (RMG) and human ARPE-19 cells were treated with triamcinolone acetonide (TA) or other glucocorticoids. Cell viability was quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5 phenyltetrazolium bromide test (MTT) assay and cell counts. Nuclei staining, TUNEL assay, annexin-V binding, activated caspase-3 and lactate dehydrogenase (LDH) production characterized cell death. Localization of cytochrome-C, AIF, LEI-and L-Dnase II, and staining with MAP-LC3 or monodansylcadaverine were also carried out. Finally, ARPE-19 cells transfected with AIP-1/Alix were exposed to TA. RESULTS: In vitro incubation of retinal cell in the presence of corticosteroids induced a specific and dose-dependent reduction of cell viability. These toxic events were not associated with the anti-inflammatory activity of these compounds but depended on the hydro solubility of their formulation. Before cell death, extensive cytoplasmic vacuolization was observed in the retinal pigment epithelial (RPE) cells in vivo and in vitro. The cells however, did not show known caspase-dependent or caspase-independent apoptotic reactions. These intracellular vacuoles were negative for MAP-LC3 but some stained positive for monodansylcadaverine. Furthermore, over expression of AIP-1/Alix inhibited RPE cell death. CONCLUSIONS: These observations suggest that corticosteroid-induced retinal cell death may be carried out mainly through a paraptosis pathway.
Resumo:
BACKGROUND: Visudyne®-mediated photodynamic therapy (PDT) at low drug/light conditions has shown to selectively enhance the uptake of liposomal doxorubicin in subpleural localized sarcoma tumors grown on rodent lungs without causing morphological alterations of the lung. The present experiments explore the impact of low-dose PDT on liposomal doxorubicin (Liporubicin™) uptake to different tumor types grown on rodent lungs. MATERIAL AND METHODS: Three groups of Fischer rats underwent subpleural generation of sarcoma, mesothelioma, or adenocarcinoma tumors on the left lung. At least five animals of each group (sarcoma, n = 5; mesothelioma, n = 7; adenocarcinoma, n = 5) underwent intraoperative low-dose (10 J/cm(2) at 35 mW/cm(2) ) PDT with 0.0625 mg/kg Visudyne® of the tumor and the lower lobe. This was followed by intravenous (IV) administration of 400 µg Liporubicin™. After a circulation time of 60 min, the tumor-bearing lung was processed for HPLC analyses. At least five animals per group underwent the same procedure but without PDT (sarcoma, n = 5; mesothelioma, n = 5; adenocarcinoma, n = 6). Five untreated animals per group underwent CD31 immunostaining of their tumors with histomorphometrical assessment of the tumor vascularization. RESULTS: Low-dose PDT significantly enhanced Liporubicin™ uptake to all tumor types (sarcoma, P = 0.0007; mesothelioma, P = 0.001; adenocarcinoma, P = 0.02) but not to normal lung tissue compared to IV drug administration alone. PDT led to a significantly increased ratio of tumor to lung tissue drug uptake for all three tumor types (P < 0.05). However, the tumor drug uptake varied between tumor types and paralleled tumor vascular density. The vascular density was significantly higher in sarcoma than in adenocarcinoma (P < 0.001) and mesothelioma (P < 0.001), whereas there was no significant difference between adenocarcinoma and mesothelioma. CONCLUSION: Low-dose Visudyne®-mediated PDT selectively enhances the uptake of systemically administered liposomal doxorubicin in tumors without affecting the drug uptake to normal lung. However, drug uptake varied significantly between tumor types and paralleled tumor vascular density.
Treatment of chronic hepatitis C genotype 1 with triple therapy comprising telaprevir or boceprevir.
Resumo:
Hepatitis C virus (HCV) infection is a leading cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma worldwide. Two first-generation protease inhibitors, telaprevir and boceprevir, have recently been approved for the treatment of chronic hepatitis C genotype 1. Triple therapy comprising pegylated interferon-α, ribavirin and telaprevir or boceprevir increases sustained virological response rates to ~70% and allows to shorten treatment duration in ~½ of treatment-naïve patients with chronic hepatitis C genotype 1. Sustained virological response rates in treatment-experienced patients depend on the response to previous treatment, ranging from >80% in previous relapsers to ~30% in previous null responders. These advances come at the expense of new adverse effects and increased cost. In addition, treatment of chronic hepatitis C will become more complex. In these times of changing medical practice, the present expert opinion statement by the Swiss Association for the Study of the Liver shall provide guidance on the treatment of chronic hepatitis C with triple therapy comprising telaprevir or boceprevir.
Resumo:
Intraocular inflammation has been recognized as a major factor leading to blindness. Because tumor necrosis factor-alpha (TNF-alpha) enhances intraocular cytotoxic events, systemic anti-TNF therapies have been introduced in the treatment of severe intraocular inflammation, but frequent re-injections are needed and are associated with severe side effects. We have devised a local intraocular nonviral gene therapy to deliver effective and sustained anti-TNF therapy in inflamed eyes. In this study, we show that transfection of the ciliary muscle by plasmids encoding for three different variants of the p55 TNF-alpha soluble receptor, using electrotransfer, resulted in sustained intraocular secretion of the encoded proteins, without any detection in the serum. In the eye, even the shorter monomeric variant resulted in efficient neutralization of TNF-alpha in a rat experimental model of endotoxin-induced uveitis, as long as 3 months after transfection. A subsequent downregulation of interleukin (IL)-6 and iNOS and upregulation of IL-10 expression was observed together with a decreased rolling of inflammatory cells in anterior segment vessels and reduced infiltration within the ocular tissues. Our results indicate that using a nonviral gene therapy strategy, the local self-production of monomeric TNF-alpha soluble receptors induces a local immunomodulation enabling the control of intraocular inflammation.
Resumo:
Experimental studies in nude mice with human colon-carcinoma grafts demonstrated the therapeutic efficiency of F(ab')2 fragments to carcinoembryonic antigen (CEA) labeled with a high dose of 131Iodine. A phase I/II study was designed to determine the maximum tolerated dose of 131I-labeled F(ab')2 fragments (131I-F(ab')2) from anti-CEA monoclonal antibody F6, its limiting organ toxicity and tumor uptake. Ten patients with non-resectable liver metastases from colorectal cancer (9 detected by CT scan and 1 by laparotomy) were treated with 131I-F(ab')2, doses ranging from 87 mCi to 300 mCi for the first 5 patients, with a constant 300-mCi dose for the last 5 patients. For all the patients, autologous bone marrow was harvested and stored before treatment. Circulating CEA ranged from 2 to 126 ng/ml. No severe adverse events were observed during or immediately following infusion of therapeutic doses. The 9 patients with radiologic evidence of liver metastases showed uptake of 131I-F(ab')2 in the metastases, as observed by single-photon-emission tomography. The only toxicity was hematologic, and no severe aplasia was observed when up to 250 mCi was infused. At the 300-mCi dose, 5 out of 6 patients presented grade-3 or -4 hematologic toxicity, with a nadir for neutrophils and thrombocytes ranging from 25 to 35 days after infusion. In these 5 cases, bone marrow was re-infused. No clinical complications were observed during aplasia. The tumor response could be evaluated in 9 out of 10 patients. One patient showed a partial response of one small liver metastasis (2 cm in diameter) and a stable evolution of the other metastases, 2 patients had stable disease, and 6 showed tumor progression at the time of evaluation (2 or 3 months after injection) by CT scan. This phase-I/II study demonstrated that a dose of 300 mCi of 131I-F(ab')2 from the anti-CEA Mab F6 is well tolerated with bone-marrow rescue, whereas a dose of 200 mCi can be infused without severe bone-marrow toxicity.