977 resultados para Document classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clustering is an important technique in organising and categorising web scale documents. The main challenges faced in clustering the billions of documents available on the web are the processing power required and the sheer size of the datasets available. More importantly, it is nigh impossible to generate the labels for a general web document collection containing billions of documents and a vast taxonomy of topics. However, document clusters are most commonly evaluated by comparison to a ground truth set of labels for documents. This paper presents a clustering and labeling solution where the Wikipedia is clustered and hundreds of millions of web documents in ClueWeb12 are mapped on to those clusters. This solution is based on the assumption that the Wikipedia contains such a wide range of diverse topics that it represents a small scale web. We found that it was possible to perform the web scale document clustering and labeling process on one desktop computer under a couple of days for the Wikipedia clustering solution containing about 1000 clusters. It takes longer to execute a solution with finer granularity clusters such as 10,000 or 50,000. These results were evaluated using a set of external data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With a focus to optimising the life cycle performance of Australian Railway bridges, new bridge classification and environmental classification systems are proposed. The new bridge classification system is mainly to facilitate the implementation of novel Bridge Management System (BMS) which optimise the life cycle cost both at project level and network level while environment classification is mainly to improve accuracy of Remaining Service Potential (RSP) module of the proposed BMS. In fact, limited capacity of the existing BMS to trigger the maintenance intervention point is an indirect result of inadequacies of the existing bridge and environmental classification systems. The proposed bridge classification system permits to identify the intervention points based on percentage deterioration of individual elements and maintenance cost, while allowing performance based rating technique to implement for maintenance optimisation and prioritisation. Simultaneously, the proposed environment classification system will enhance the accuracy of prediction of deterioration of steel components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For traditional information filtering (IF) models, it is often assumed that the documents in one collection are only related to one topic. However, in reality users’ interests can be diverse and the documents in the collection often involve multiple topics. Topic modelling was proposed to generate statistical models to represent multiple topics in a collection of documents, but in a topic model, topics are represented by distributions over words which are limited to distinctively represent the semantics of topics. Patterns are always thought to be more discriminative than single terms and are able to reveal the inner relations between words. This paper proposes a novel information filtering model, Significant matched Pattern-based Topic Model (SPBTM). The SPBTM represents user information needs in terms of multiple topics and each topic is represented by patterns. More importantly, the patterns are organized into groups based on their statistical and taxonomic features, from which the more representative patterns, called Significant Matched Patterns, can be identified and used to estimate the document relevance. Experiments on benchmark data sets demonstrate that the SPBTM significantly outperforms the state-of-the-art models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an overview of the QUT plant classification system submitted to LifeCLEF 2014. This system uses generic features extracted from a convolutional neural network previously used to perform general object classification. We examine the effectiveness of these features to perform plant classification when used in combination with an extremely randomised forest. Using this system, with minimal tuning, we obtained relatively good results with a score of 0:249 on the test set of LifeCLEF 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Narrative text is a useful way of identifying injury circumstances from the routine emergency department data collections. Automatically classifying narratives based on machine learning techniques is a promising technique, which can consequently reduce the tedious manual classification process. Existing works focus on using Naive Bayes which does not always offer the best performance. This paper proposes the Matrix Factorization approaches along with a learning enhancement process for this task. The results are compared with the performance of various other classification approaches. The impact on the classification results from the parameters setting during the classification of a medical text dataset is discussed. With the selection of right dimension k, Non Negative Matrix Factorization-model method achieves 10 CV accuracy of 0.93.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a promising boundary setting method for solving challenging issues in text classification to produce an effective text classifier. A classifier must identify boundary between classes optimally. However, after the features are selected, the boundary is still unclear with regard to mixed positive and negative documents. A classifier combination method to boost effectiveness of the classification model is also presented. The experiments carried out in the study demonstrate that the proposed classifier is promising.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monitoring of the actual activities of daily living of individuals with lower limb amputation is essential for an evidence-based fitting of the prosthesis, more particularly the choice of components (e.g., knees, ankles, feet)[1-4]. The purpose of this presentation was to give an overview of the categorization of the load regime data to assess the functional output and usage of the prosthesis of lower limb amputees has presented in several publications[5, 6]. The objectives were to present a categorization of load regime and to report the results for a case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background There is a need for better understanding of the dispersion of classification-related variable to develop an evidence-based classification of athletes with a disability participating in stationary throwing events. Objectives The purposes of this study are (A) to describe tools designed to comprehend and represent the dispersion of the performance between successive classes, and (B) to present this dispersion for the elite male and female stationary shot-putters who participated in Beijing 2008 Paralympic Games. Study design Retrospective study Methods This study analysed a total of 479 attempts performed by 114 male and female stationary shot-putters in three F30s (F32-F34) and six F50s (F52-F58) classes during the course of eight events during Beijing 2008 Paralympic Games. Results The average differences of best performance were 1.46±0.46 m for males between F54 and F58 classes as well as 1.06±1.18 m for females between F55 and F58 classes. The results demonstrated a linear relationship between best performance and classification while revealing two male Gold Medallists in F33 and F52 classes were outliers. Conclusions This study confirms the benefits of the comparative matrices, performance continuum and dispersion plots to comprehend classification-related variables. The work presented here represents a stepping stone into biomechanical analyses of stationary throwers, particularly on the eve of the London 2012 Paralympic Games where new evidences could be gathered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional text classification technology based on machine learning and data mining techniques has made a big progress. However, it is still a big problem on how to draw an exact decision boundary between relevant and irrelevant objects in binary classification due to much uncertainty produced in the process of the traditional algorithms. The proposed model CTTC (Centroid Training for Text Classification) aims to build an uncertainty boundary to absorb as many indeterminate objects as possible so as to elevate the certainty of the relevant and irrelevant groups through the centroid clustering and training process. The clustering starts from the two training subsets labelled as relevant or irrelevant respectively to create two principal centroid vectors by which all the training samples are further separated into three groups: POS, NEG and BND, with all the indeterminate objects absorbed into the uncertain decision boundary BND. Two pairs of centroid vectors are proposed to be trained and optimized through the subsequent iterative multi-learning process, all of which are proposed to collaboratively help predict the polarities of the incoming objects thereafter. For the assessment of the proposed model, F1 and Accuracy have been chosen as the key evaluation measures. We stress the F1 measure because it can display the overall performance improvement of the final classifier better than Accuracy. A large number of experiments have been completed using the proposed model on the Reuters Corpus Volume 1 (RCV1) which is important standard dataset in the field. The experiment results show that the proposed model has significantly improved the binary text classification performance in both F1 and Accuracy compared with three other influential baseline models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis targets on a challenging issue that is to enhance users' experience over massive and overloaded web information. The novel pattern-based topic model proposed in this thesis can generate high-quality multi-topic user interest models technically by incorporating statistical topic modelling and pattern mining. We have successfully applied the pattern-based topic model to both fields of information filtering and information retrieval. The success of the proposed model in finding the most relevant information to users mainly comes from its precisely semantic representations to represent documents and also accurate classification of the topics at both document level and collection level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semantic perception and object labeling are key requirements for robots interacting with objects on a higher level. Symbolic annotation of objects allows the usage of planning algorithms for object interaction, for instance in a typical fetchand-carry scenario. In current research, perception is usually based on 3D scene reconstruction and geometric model matching, where trained features are matched with a 3D sample point cloud. In this work we propose a semantic perception method which is based on spatio-semantic features. These features are defined in a natural, symbolic way, such as geometry and spatial relation. In contrast to point-based model matching methods, a spatial ontology is used where objects are rather described how they "look like", similar to how a human would described unknown objects to another person. A fuzzy based reasoning approach matches perceivable features with a spatial ontology of the objects. The approach provides a method which is able to deal with senor noise and occlusions. Another advantage is that no training phase is needed in order to learn object features. The use-case of the proposed method is the detection of soil sample containers in an outdoor environment which have to be collected by a mobile robot. The approach is verified using real world experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Affect is an important feature of multimedia content and conveys valuable information for multimedia indexing and retrieval. Most existing studies for affective content analysis are limited to low-level features or mid-level representations, and are generally criticized for their incapacity to address the gap between low-level features and high-level human affective perception. The facial expressions of subjects in images carry important semantic information that can substantially influence human affective perception, but have been seldom investigated for affective classification of facial images towards practical applications. This paper presents an automatic image emotion detector (IED) for affective classification of practical (or non-laboratory) data using facial expressions, where a lot of “real-world” challenges are present, including pose, illumination, and size variations etc. The proposed method is novel, with its framework designed specifically to overcome these challenges using multi-view versions of face and fiducial point detectors, and a combination of point-based texture and geometry. Performance comparisons of several key parameters of relevant algorithms are conducted to explore the optimum parameters for high accuracy and fast computation speed. A comprehensive set of experiments with existing and new datasets, shows that the method is effective despite pose variations, fast, and appropriate for large-scale data, and as accurate as the method with state-of-the-art performance on laboratory-based data. The proposed method was also applied to affective classification of images from the British Broadcast Corporation (BBC) in a task typical for a practical application providing some valuable insights.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a highly reliable fault diagnosis scheme for incipient low-speed rolling element bearing failures. The scheme consists of fault feature calculation, discriminative fault feature analysis, and fault classification. The proposed approach first computes wavelet-based fault features, including the respective relative wavelet packet node energy and entropy, by applying a wavelet packet transform to an incoming acoustic emission signal. The most discriminative fault features are then filtered from the originally produced feature vector by using discriminative fault feature analysis based on a binary bat algorithm (BBA). Finally, the proposed approach employs one-against-all multiclass support vector machines to identify multiple low-speed rolling element bearing defects. This study compares the proposed BBA-based dimensionality reduction scheme with four other dimensionality reduction methodologies in terms of classification performance. Experimental results show that the proposed methodology is superior to other dimensionality reduction approaches, yielding an average classification accuracy of 94.9%, 95.8%, and 98.4% under bearing rotational speeds at 20 revolutions-per-minute (RPM), 80 RPM, and 140 RPM, respectively.