981 resultados para Disposal of solid waste
Resumo:
The present study attempted to identify the significant parameters which affect radionuclide migration from a low level radioactive waste disposal site located in a clay deposit. From initial sorption studies on smectite minerals, increased Kd with decreasing initial cation concentration was observed, and three sorption mechanisms were identified. The observation of anion dependent sorption was related to the existence of a mechanism in which an anion-cation pair are bound to the clay surface through the anion. The influence of competing cations, typical of inorganic groundwater constituents, depended on: (1) Ni/Co:Mn+(Mn+ = competing cation) ratio, (2) nature of M^n+, (3) total solution ionic strength. The presence of organic material in groundwater is well documented, but its effect on cation sorption has not been established. An initial qualitative investigation involving addition of simple organic ligands to Ni(Co)-hectorite samples demonstrated the formation of metal complexes in the clay interlayers, although some modified behaviour was observed. Further quantitative examination involving likely groundwater organic constituents and more comprehensive physical investigation confirmed this behaviour and enabled separation of the organic compounds used into two classes, according to their effect on cation sorption; (i) acids, (ii) amine compounds. X-ray photoelectron spectroscopy, scanning electron microscopy and Mossbauer spectroscopy were used to investigate the nature of transition metal ions sorbed onto montmorillonite and hectorite. Evidence strongly favoured the sorption of the hexaaquo cation, although a series of sorption sites of slightly different chemical characteristics were responsible for broadened peak widths observed in XPS and Mossbauer investigations. The surface sensitivity of XPS enabled recognition of the two surface sorption sites proposed in earlier sorption studies. Although thermal treatment of Fe^3+/Fe^2+-hectorite samples left iron atoms bonded to the silicate sheet structure, Mossbauer evidence indicated the presence of both ferric and ferrous iron in all samples.
Resumo:
In this paper a Hierarchical Analytical Network Process (HANP) model is demonstrated for evaluating alternative technologies for generating electricity from MSW in India. The technological alternatives and evaluation criteria for the HANP study are characterised by reviewing the literature and consulting experts in the field of waste management. Technologies reviewed in the context of India include landfill, anaerobic digestion, incineration, pelletisation and gasification. To investigate the sensitivity of the result, we examine variations in expert opinions and carry out an Analytical Hierarchy Process (AHP) analysis for comparison. We find that anaerobic digestion is the preferred technology for generating electricity from MSW in India. Gasification is indicated as the preferred technology in an AHP model due to the exclusion of criteria dependencies and in an HANP analysis when placing a high priority on net output and retention time. We conclude that HANP successfully provides a structured framework for recommending which technologies to pursue in India, and the adoption of such tools is critical at a time when key investments in infrastructure are being made. Therefore the presented methodology is thought to have a wider potential for investors, policy makers, researchers and plant developers in India and elsewhere. © 2013 Elsevier Ltd. All rights reserved.
Drying kinetic analysis of municipal solid waste using modified page model and pattern search method
Resumo:
This work studied the drying kinetics of the organic fractions of municipal solid waste (MSW) samples with different initial moisture contents and presented a new method for determination of drying kinetic parameters. A series of drying experiments at different temperatures were performed by using a thermogravimetric technique. Based on the modified Page drying model and the general pattern search method, a new drying kinetic method was developed using multiple isothermal drying curves simultaneously. The new method fitted the experimental data more accurately than the traditional method. Drying kinetic behaviors under extrapolated conditions were also predicted and validated. The new method indicated that the drying activation energies for the samples with initial moisture contents of 31.1 and 17.2 % on wet basis were 25.97 and 24.73 kJ mol−1. These results are useful for drying process simulation and industrial dryer design. This new method can be also applied to determine the drying parameters of other materials with high reliability.
Resumo:
Report on a review of the Resource Enhancement and Protection (REAP) program and the Solid Waste Alternatives Program (SWAP) administered by the Department of Natural Resources (DNR) for the period July 1, 2009 through June 30, 2015
Resumo:
Inadequate final disposal of municipal solid waste (MSW) is associated with significant greenhouse gas (GHG) emission, environmental, health and safety issues, space consumption, public health and developmental issues in general. The environmental impact of waste is mostly felt in developing countries, inadequate waste management and treatment solution, inadequate policies and outdated practices are some of the factors leading to the significantly high final disposal of waste in dumps in developing countries. Brazil and other developing countries are changing the status quo by adopting polices that will adequately address this problem of inadequate waste management and disposal. Life cycle analysis (LCA) identifies the potential environmental impact of a product though environmental impact assessment, International Organization for Standardization (ISO) created the ISO 14040 and ISO 14044 to serve as principle guidelines for conducting LCA. Various waste treatment solution was applied to identify the waste management solution with the least Global warming potential (GWP) for treating the MSW generated from the city of Rio de Janerio, while reducing significantly final waste disposed in landfill.
Resumo:
Given that landfills are depletable and replaceable resources, the right approach, when dealing with landfill management, is that of designing an optimal sequence of landfills rather than designing every single landfill separately. In this paper we use Optimal Control models, with mixed elements of both continuous and discrete time problems, to determine an optimal sequence of landfills, as regarding their capacity and lifetime. The resulting optimization problems involve splitting a time horizon of planning into several subintervals, the length of which has to be decided. In each of the subintervals some costs, the amount of which depends on the value of the decision variables, have to be borne. The obtained results may be applied to other economic problems such as private and public investments, consumption decisions on durable goods, etc.
Resumo:
The thermal decomposition of a solid recovered fuel has been studied using thermogravimetry, in order to get information about the main steps in the decomposition of such material. The study comprises two different atmospheres: inert and oxidative. The kinetics of decomposition is determined at three different heating rates using the same kinetic constants and model for both atmospheres at all the heating rates simultaneously. A good correlation of the TG data is obtained using three nth-order parallel reactions.
Resumo:
This paper presents some improvements in the model proposed by Machado et al. [Machado SL, Carvalho MF, Vilar OM. Constitutive model for municipal solid waste. J Geotech Geoenviron Eng ASCE 2002; 128(11):940-51] now considering the influence of biodegradation of organic matter in the mechanical behavior of municipal solid waste. The original framework considers waste as composed of two component groups; fibers and organic paste. The particular laws of behavior are assessed for each component group and then coupled to represent waste behavior. The improvements introduced in this paper take into account the changes in the properties of fibers and mass loss due to organic matter depletion over time. Mass loss is indirectly calculated considering the MSW gas generation potential through a first order decay model. It is shown that as the biodegradation process occurs the proportion of fibers increases, however, they also undergo a degradation process which tends to reduce their ultimate tensile stress and Young modulus. The way these changes influence the behavior of MSW is incorporated in the final framework which captures the main features of the MSW stress-strain behavior under different loading conditions. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Dissertação de Mestrado em Ambiente, Saúde e Segurança.
Resumo:
OBJECTIVE: To estimate the seroprevalence of HIV, hepatitis B and C and syphilis and to describe risk behaviors associated to their transmission among recyclable waste collectors. METHODS: A seroepidemiological survey was carried out in the city of Santos, Southeastern Brazil, in 2005. A total of 315 individuals were enrolled in the survey, of which 253 subjects underwent serological testing HIV, hepatitis B and C and syphilis. Statistical analysis consisted of univariate and bivariate analyses (cross-tabulation and odds ratio) and multivariate analysis (by logistic regression), relating HIV infection with established risk behaviors and seropositivity. RESULTS: Overall seroprevalences were: HIV, 8.9%; hepatitis B, 34.4%; hepatitis C, 12.4%; and syphilis, 18.4%. Subjects were characterized by a predominance of males with low educational and economic levels, subjected to parenteral and sexual exposures to HIV and other sexually transmitted infections. Multivariate analysis results indicated that risk factors for both sexually and parenterally related exposure were significantly associated with HIV in this community. CONCLUSIONS: Seroprevalences found in the study were approximately 10 to 12 times higher than the national average. These communities are socially marginalized and generally not recognized by national programs as potentially endangered populations.
Resumo:
The most active phase of the fluid catalytic cracking (FCC) catalyst, used in oil refinery, is zeolite-Y which is an aluminosilicate with a high internal and external surface area responsible for its high reactivity. Waste FCC catalyst is potentially able to be reused in cement-based materials - as an additive - undergoing a pozzolanic reaction with calcium hydroxide (Ca(OH)2) formed during cement hydration [1-3]. This reaction produces additional strength-providing reaction products i.e., calcium silicate hydrate (C-S-H) and hydrous calcium aluminates (C-A-H) which exact chemical formula and structure are still unknown. Partial replacement of cement by waste FCC catalyst has two key advantages: (1) lowering of cement production with the associated pollution reduction as this industry represents one of the largest sources of man-made CO2 emissions, and (2) improving the mechanical properties and durability of cement-based materials. Despite these advantages, there is a lack of fundamental knowledge on pozzolanic reaction mechanisms as well as spatial distribution of porosity and solid phases interactions at the microstructural level and consequently their relationship with macroscopical engineering properties of catalyst/cement blends. Within this scope, backscattered electron (BSE) images acquired in a scanning electron microscope (SEM) equipped with Energy-Dispersive Spectroscopy (EDS) and by X-ray diffraction were used to investigate chemical composition of hydration products and to analyse spatial information of the microstructure of waste FCC catalyst blended cement mortars. For this purpose mortars with different levels of cement substitution by waste catalyst as well as with different hydration ages, were prepared. The waste FCC catalyst used is produced by the Portuguese refinery company Petrogal S.A.
Resumo:
Thesis submitted to the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia for the degree of Doctor of Philosophy in Environmental Engineering
Resumo:
Collecting and transporting solid waste is a constant problem for municipalities and populations in general. Waste management should take into account the preservation of the environment and the reduction of costs. The goal with this paper is to address a real-life solid waste problem. The case reveals some general and specific characteristics which are not rare, but are not widely addressed in the literature. Furthermore, new methods and models to deal with sectorization and routing are introduced, which can be extended to other applications. Sectorization and routing are tackled following a two-phase approach. In the first phase, a new method is described for sectorization based on electromagnetism and Coulomb’s Law. The second phase addresses the routing problems in each sector. The paper addresses not only territorial division, but also the frequency with which waste is collected, which is a critical issue in these types of applications. Special characteristics related to the number and type of deposition points were also a motivation for this work. A new model for a Mixed Capacitated Arc Routing Problem with Limited Multi-Landfills is proposed and tested in real instances. The computational results achieved confirm the effectiveness of the entire approach.
Resumo:
Other Audit Reports - Waste Management