930 resultados para Discrete Choice Model
Resumo:
Here, we study the stable integration of real time optimization (RTO) with model predictive control (MPC) in a three layer structure. The intermediate layer is a quadratic programming whose objective is to compute reachable targets to the MPC layer that lie at the minimum distance to the optimum set points that are produced by the RTO layer. The lower layer is an infinite horizon MPC with guaranteed stability with additional constraints that force the feasibility and convergence of the target calculation layer. It is also considered the case in which there is polytopic uncertainty in the steady state model considered in the target calculation. The dynamic part of the MPC model is also considered unknown but it is assumed to be represented by one of the models of a discrete set of models. The efficiency of the methods presented here is illustrated with the simulation of a low order system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this article, we consider the stochastic optimal control problem of discrete-time linear systems subject to Markov jumps and multiplicative noise under three kinds of performance criterions related to the final value of the expectation and variance of the output. In the first problem it is desired to minimise the final variance of the output subject to a restriction on its final expectation, in the second one it is desired to maximise the final expectation of the output subject to a restriction on its final variance, and in the third one it is considered a performance criterion composed by a linear combination of the final variance and expectation of the output of the system. We present explicit sufficient conditions for the existence of an optimal control strategy for these problems, generalising previous results in the literature. We conclude this article presenting a numerical example of an asset liabilities management model for pension funds with regime switching.
Resumo:
Using data from a logging experiment in the eastern Brazilian Amazon region, we develop a matrix growth and yield model that captures the dynamic effects of harvest system choice on forest structure and composition. Multinomial logistic regression is used to estimate the growth transition parameters for a 10-year time step, while a Poisson regression model is used to estimate recruitment parameters. The model is designed to be easily integrated with an economic model of decisionmaking to perform tropical forest policy analysis. The model is used to compare the long-run structure and composition of a stand arising from the choice of implementing either conventional logging techniques or more carefully planned and executed reduced-impact logging (RIL) techniques, contrasted against a baseline projection of an unlogged forest. Results from log and leave scenarios show that a stand logged according to Brazilian management requirements will require well over 120 years to recover its initial commercial volume, regardless of logging technique employed. Implementing RIL, however, accelerates this recovery. Scenarios imposing a 40-year cutting cycle raise the possibility of sustainable harvest volumes, although at significantly lower levels than is implied by current regulations. Meeting current Brazilian forest policy goals may require an increase in the planned total area of permanent production forest or the widespread adoption of silvicultural practices that increase stand recovery and volume accumulation rates after RIL harvests. Published by Elsevier B.V.
Resumo:
Superconducting pairing of electrons in nanoscale metallic particles with discrete energy levels and a fixed number of electrons is described by the reduced Bardeen, Cooper, and Schrieffer model Hamiltonian. We show that this model is integrable by the algebraic Bethe ansatz. The eigenstates, spectrum, conserved operators, integrals of motion, and norms of wave functions are obtained. Furthermore, the quantum inverse problem is solved, meaning that form factors and correlation functions can be explicitly evaluated. Closed form expressions are given for the form factors and correlation functions that describe superconducting pairing.
Resumo:
A modelling framework is developed to determine the joint economic and environmental net benefits of alternative land allocation strategies. Estimates of community preferences for preservation of natural land, derived from a choice modelling study, are used as input to a model of agricultural production in an optimisation framework. The trade-offs between agricultural production and environmental protection are analysed using the sugar industry of the Herbert River district of north Queensland as an example. Spatially-differentiated resource attributes and the opportunity costs of natural land determine the optimal tradeoffs between production and conservation for a range of sugar prices.
Resumo:
This paper presents a personal view of the interaction between the analysis of choice under uncertainty and the analysis of production under uncertainty. Interest in the foundations of the theory of choice under uncertainty was stimulated by applications of expected utility theory such as the Sandmo model of production under uncertainty. This interest led to the development of generalized models including rank-dependent expected utility theory. In turn, the development of generalized expected utility models raised the question of whether such models could be used in the analysis of applied problems such as those involving production under uncertainty. Finally, the revival of the state-contingent approach led to the recognition of a fundamental duality between choice problems and production problems.
Resumo:
We obtain a class of non-diagonal solutions of the reflection equation for the trigonometric A(n-1)((1)) vertex model. The solutions can be expressed in terms of intertwinner matrix and its inverse, which intertwine two trigonometric R-matrices. In addition to a discrete (positive integer) parameter l, 1 less than or equal to l less than or equal to n, the solution contains n + 2 continuous boundary parameters.
Resumo:
Conditions which influence the viability, integrity, and extraction efficiency of the isolated perfused rat liver were examined to establish optimal conditions for subsequent work in reperfusion injury studies including the choice of buffer, use of oncotic agents, hematocrit, perfusion flow rate, and pressure. Rat livers were perfused with MOPS-buffered Ringer solution with or without erythrocytes. Perfusates were collected and analyzed for blood gases, electrolytes, enzymes, radioactivity in MID studies, and lignocaine in extraction studies. Liver tissue was sampled for histological examinations, and wet:dry weight of the liver was also determined. MOPS-buffered Ringer solution was found to be superior to Krebs bicarbonate buffer, in terms of pH control and buffering capacity, especially during any prolonged period of liver perfusion. A pH of 7.2 is chosen for perfusion since this is the physiological pH of the portal blood. The presence of albumin was important as an oncotic agent, particularly when erythrocytes were used in the perfusate. Perfusion pressure, resistance, and vascular volume are how-dependent and the inclusion of erythrocytes in the perfusate substantially altered the flow characteristics for perfusion pressure and resistance but not vascular volume. Lignocaine extraction was relatively flow-independent. Perfusion injury as defined by enzyme release and tissue fine structure was closely related to the supply of O-2. The optimal conditions for liver perfusion depend upon an adequate supply of oxygen. This can be achieved by using either erythrocyte-free perfusate at a how rate greater than 6 ml/min/g liver or a 20% erythrocyte-containing perfusate at 2 ml/min/g. (C) 1996 Academic Press, Inc.
Resumo:
The dynamic response of dry masonry columns can be approximated with finite-difference equations. Continuum models follow by replacing the difference quotients of the discrete model by corresponding differential expressions. The mathematically simplest of these models is a one-dimensional Cosserat theory. Within the presented homogenization context, the Cosserat theory is obtained by making ad hoc assumptions regarding the relative importance of certain terms in the differential expansions. The quality of approximation of the various theories is tested by comparison of the dispersion relations for bending waves with the dispersion relation of the discrete theory. All theories coincide with differences of less than 1% for wave-length-block-height (L/h) ratios bigger than 2 pi. The theory based on systematic differential approximation remains accurate up to L/h = 3 and then diverges rapidly. The Cosserat model becomes increasingly inaccurate for L/h < 2 pi. However, in contrast to the systematic approximation, the wave speed remains finite. In conclusion, considering its relative simplicity, the Cosserat model appears to be the natural starting point for the development of continuum models for blocky structures.
Resumo:
A continuum model for regular block structures is derived by replacing the difference quotients of the discrete equations by corresponding differential quotients. The homogenization procedure leads to an anisotropic Cosserat Continuum. For elastic block interactions the dispersion relations of the discrete and the continuous models are derived and compared. Yield criteria for block tilting and sliding are formulated. An extension of the theory for large deformation is proposed. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
This paper provides a characterization of QALYs, the most important outcome measure in medical decision making, in the context of a general rank dependent utility model. We show that both for chronic and for nonchronic health states the characterization of QALYs depends on intuitive conditions. This facilitates the assessment of the validity of QALYs in rank dependent non-expected utility theories and a comparison with other utility based measures of health.
Resumo:
Conventional karyotyping detects anomalies in 3-15% of patients with multiple congenital anomalies and mental retardation (MCA/MR). Whole-genome array screening (WGAS) has been consistently suggested as the first choice diagnostic test for this group of patients, but it is very costly for large-scale use in developing countries. We evaluated the use of a combination of Multiplex Ligation-dependent Probe Amplification (MLPA) kits to increase the detection rate of chromosomal abnormalities in MCA/MR patients. We screened 261 MCA/MR patients with two subtelomeric and one microdeletion kits. This would theoretically detect up to 70% of all submicroscopic abnormalities. Additionally we scored the de Vries score for 209 patients in an effort to find a suitable cut-off for MLPA screening. Our results reveal that chromosomal abnormalities were present in 87 (33.3%) patients, but only 57 (21.8%) were considered causative. Karyotyping detected 15 abnormalities (6.9%), while MLPA identified 54 (20.7%). Our combined MLPA screening raised the total detection number of pathogenic imbalances more than three times when compared to conventional karyotyping. We also show that using the de Vries score as a cutoff for this screening would only be suitable under financial restrictions. A decision analytic model was constructed with three possible strategies: karyotype, karyotype + MLPA and karyotype + WGAS. Karyotype + MLPA strategy detected anomalies in 19.8% of cases which account for 76.45% of the expected yield for karyotype + WGAS. Incremental Cost Effectiveness Ratio (ICER) of MLPA is three times lower than that of WGAS, which means that, for the same costs, we have three additional diagnoses with MLPA but only one with WGAS. We list all causative alterations found, including rare findings, such as reciprocal duplications of regions deleted in Sotos and Williams-Beuren syndromes. We also describe imbalances that were considered polymorphisms or rare variants, such as the new SNP that confounded the analysis of the 22q13.3 deletion syndrome. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
HE PROBIT MODEL IS A POPULAR DEVICE for explaining binary choice decisions in econometrics. It has been used to describe choices such as labor force participation, travel mode, home ownership, and type of education. These and many more examples can be found in papers by Amemiya (1981) and Maddala (1983). Given the contribution of economics towards explaining such choices, and given the nature of data that are collected, prior information on the relationship between a choice probability and several explanatory variables frequently exists. Bayesian inference is a convenient vehicle for including such prior information. Given the increasing popularity of Bayesian inference it is useful to ask whether inferences from a probit model are sensitive to a choice between Bayesian and sampling theory techniques. Of interest is the sensitivity of inference on coefficients, probabilities, and elasticities. We consider these issues in a model designed to explain choice between fixed and variable interest rate mortgages. Two Bayesian priors are employed: a uniform prior on the coefficients, designed to be noninformative for the coefficients, and an inequality restricted prior on the signs of the coefficients. We often know, a priori, whether increasing the value of a particular explanatory variable will have a positive or negative effect on a choice probability. This knowledge can be captured by using a prior probability density function (pdf) that is truncated to be positive or negative. Thus, three sets of results are compared:those from maximum likelihood (ML) estimation, those from Bayesian estimation with an unrestricted uniform prior on the coefficients, and those from Bayesian estimation with a uniform prior truncated to accommodate inequality restrictions on the coefficients.
Resumo:
The power required to operate large mills is typically 5-10 MW. Hence, optimisation of power consumption will have a significant impact on overall economic performance and environmental impact. Power draw modelling results using the discrete element code PFC3D have been compared with results derived from the widely used empirical Model of Morrell. This is achieved by calculating the power draw for a range of operating conditions for constant mill size and fill factor using two modelling approaches. fThe discrete element modelling results show that, apart from density, selection of the appropriate material damping ratio is critical for the accuracy of modelling of the mill power draw. The relative insensitivity of the power draw to the material stiffness allows selection of moderate stiffness values, which result in acceptable computation time. The results obtained confirm that modelling of the power draw for a vertical slice of the mill, of thickness 20% of the mill length, is a reliable substitute for modelling the full mill. The power draw predictions from PFC3D show good agreement with those obtained using the empirical model. Due to its inherent flexibility, power draw modelling using PFC3D appears to be a viable and attractive alternative to empirical models where necessary code and computer power are available.
Resumo:
Predictions of flow patterns in a 600-mm scale model SAG mill made using four classes of discrete element method (DEM) models are compared to experimental photographs. The accuracy of the various models is assessed using quantitative data on shoulder, toe and vortex center positions taken from ensembles of both experimental and simulation results. These detailed comparisons reveal the strengths and weaknesses of the various models for simulating mills and allow the effect of different modelling assumptions to be quantitatively evaluated. In particular, very close agreement is demonstrated between the full 3D model (including the end wall effects) and the experiments. It is also demonstrated that the traditional two-dimensional circular particle DEM model under-predicts the shoulder, toe and vortex center positions and the power draw by around 10 degrees. The effect of particle shape and the dimensionality of the model are also assessed, with particle shape predominantly affecting the shoulder position while the dimensionality of the model affects mainly the toe position. Crown Copyright (C) 2003 Published by Elsevier Science B.V. All rights reserved.