889 resultados para Diameter of Graph


Relevância:

90.00% 90.00%

Publicador:

Resumo:

High quality Ge was epitaxially grown on Si using ultrahigh vacuum/chemical vapor deposition (UHV/CVD). This paper demonstrates efficient germanium-on-silicon p-i-n photodetectors with 0.8 mu m Ge, with responsivities as high as 0.38 and 0.21 A/W at 1.31 and 1.55 mu m, respectively. The dark current density is 0.37 mA/cm(2) and 29.4 mA/cm(2) at 0 V and a reverse bias of 0.5 V. The detector with a diameter of 30 mu m, a 3 dB-bandwidth of 4.72 GHz at an incident wavelength of 1550 nm and zero external bias has been measured. At a reverse bias of 3 V, the bandwidth is 6.28 GHz.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The defect formation energies of transition metals (Cr, Fe, and Ni) doped in the pseudo-H passivated ZnO nanowires and bulk are systematically investigated using first-principles methods. The general chemical trends of the nanowires are similar to those of the bulk. We also show that the formation energy increases as the diameter of the nanowire decreases, indicating that the doping of magnetic ions in the ZnO nanowire becomes more difficult with decreasing diameter. We also systematically calculate the ferromagnetic properties of transition metals doped in the ZnO nanowire and bulk, and find that Cr ions of the nanowire favor ferromagnetic state, which is consistent with the experimental results. We also find that the ferromagnetic coupling state of Cr is more stable in the nanowire than in the bulk, which may lead to a higher T (c) useful for the nano-materials design of spintronics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mode coupling between the whispering-gallery modes (WGMs) is numerically investigated for a two-dimensional microdisk resonator with an output waveguide. The equilateral-polygonal shaped mode patterns can be constructed by mode coupling in the microdisk, and the coupled modes can still keep high quality factors (Q factors). For a microdisk with a diameter of 4.5 mu m and a refractive index of 3.2 connected to a 0.6-mu m-wide output waveguide, the coupled mode at the wavelength of 1490 nm has a Q factor in the order of 10(4), which is ten times larger than those of the uncoupled WGMs, and the output efficiency defined as the ratio of the energy flux confined in the output waveguide to the total radiation energy flux is about 0.65. The mode coupling can be used to realize high efficiency directional-emission microdisk lasers. (C) 2009 Optical Society of America

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Photoluminescence of some low-dimensional semiconductor structures has been investigated under pressure. The measured pressure coefficients of In0.55Al0.45 As/Al0.5Ga0.5As quantum dots with average diameter of 26, 52 and 62 nm are 82, 94 and 98 meV/GPa, respectively. It indicates that these quantum dots are type-I dots. On the other hand, the measured pressure coefficient for quantum dots with 7 nm in size is -17meV/GPa, indicating the type-II character. The measured pressure coefficient for Mn emission in ZnS:Mn nanoparticles is -34.6meV/GPa, in agreement with the predication of the crystal field theory. However, the DA emission is nearly independent on pressure, indicating that this emission is related to the surface defects in ZnS host. The measured pressure coefficient of Cu emission in ZnS: Cu nanoparticles is 63.2 meV/GPa. It implies that the acceptor level introduced by Cu ions has some character of shallow level. The measured pressure coefficient of Eu emission in ZnS:Eu nanoparticles is 24.1 mev/GPa, in contrast to the predication of the crystal field theory. It may be due to the strong interaction between the excited state of Eu ions and the conduction band of ZnS host.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Single-walled carbon nanotube (SWNT) rings with a diameter of about 100 nm have been prepared by thermally decomposing hydrocarbon in a floating catalyst system. These rings appeared to consist mostly of SWNT toroids. High resolution transmission electron microscopy showed that these rings were composed of tens of SWNTs with a tightly packed arrangement. The production of SWNT rings was improved through optimizing various growth parameters, such as growth temperature, sublimation temperature of the catalyst, different gas flows and different catalyst components. The growth mechanism of the SWNT rings is discussed. In the field emission measurements we found that field emission from a halved ring is better than that from a whole SWNT ring, which contributed to the better emission from two opened ends of the nanotubes of the halved SWNT ring.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The self-organization growth of In0.32Ga0.68As/GaAs quantum dots (QDs) superlattices is investigated by molecular beam epitaxy. It is found that high growth temperature and low growth rate are favorable for the formation of perfect vertically aligned QDs superlattices. The aspect ratio (height versus diameter) of QD increases from 0.16 to 0.23 with increase number of bi-layer. We propose that this shape change play a significant role to improve the uniformity of QDs superlattices. Features in the variable temperature photoluminescence characteristics indicate the high uniformity of the QDs. Strong infrared absorption in the 8-12 mum was observed. Our results suggest the promising applications of QDs in normal sensitive infrared photodetectors. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tin disulfide (SnS2) nanocrystalline/amorphous blended phases were synthesized by mild chemical reaction. Both X-ray diffraction and transmission electron microscopy measurements demonstrate that the as-synthesized particles presented very small size, with a diameter of only a few nanometers. The photoluminescence (PL) spectrum suggests efficient splitting of photo-generated excitons in poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and SnS2 hybrid films. Organic/inorganic hybrid solar cells comprising MDMO-PPV and SnS2 were prepared, giving photovoltage, photocurrent, fill factor and efficiency values of 0.702 V, 0.549 mA/cm(2), 0.385 and 0.148%, respectively, which suggests that this phase-blended inorganic semiconductor can also serve as a promising solar energy material. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The flow behaviors of CH3CCl2F hydrate slurry with volume concentration of 10-70% were studied in a new built flow loop with a diameter of 42.0 mm and length of 30.0 m. Morphologies of the fluids from slurrylike hydrates to slushlike hydrates with increasing of hydrate volume concentration in pipeline were observed. Pressure drops in pipeline also were studied and an exceptional pressure transition zone with hydrate volume concentration between 30% and 40% was found for the first time, which can be used as a notation to judge if the pipeline runs safely or not. Fanning friction factors of the hydrate slurries with all hydrate contents tend to constants between 0.38 and 0.5, which depend on the volume concentration in slurries, when the velocity reaches 1.5 m/s. A simple relation to estimate the pressure drop of hydrate slurry in pipeline was presented and verified. Experimental results were compared to the estimated results, which showed a good agreement. 

Relevância:

90.00% 90.00%

Publicador:

Resumo:

InGaN/GaN multiple quantum well-based light-emitting diode (LED) nanopillar arrays were fabricated using Ni self-assembled nanodots as etching mask. The Ni nanodots were fabricated with a density of 6 x 10(8)-1.5 x 10(9) cm(-2) and a dimension of 100-250 nm with varying Ni thickness and annealing duration time. Then LED nanopillar arrays with diameter of approximately 250 nm and height of 700 nm were fabricated by inductively coupled plasma etching. In comparison to the as-grown LED sample an enhancement by a factor of four of photoluminescence (PL) intensity is achieved for the nanopillars and a blueshift as well as a decrease in full width at half maximum of the PL peak are also observed. The method of additional chemical etching was used to remove the etching-induced damage. Then nano-LED devices were further completed using a planarization approach to deposit p-type electrode on the tips of nanopillars. The current-voltage curves of both nanopillars and planar LED devices are measured for comparison.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Photoluminescence and time-resolved photoluminescence were used to study the heterointerface configuration in GaAs/AlGaAs quantum wells grown by molecular-beam epitaxy with growth interruption. Photoluminescence spectra of the growth-interrupted sample are characterized by multiplet structures, with energy separation corresponding to a 0.8 monolayer difference in well width, rather than 1 monolayer as expected from the ''atomically smooth island'' picture. By analyzing the thermal transfer process of the photogenerated carriers and luminescence decay process, we further exploit the exciton localization at the interface microroughness superimposed on the extended growth islands. The lateral size of the microroughness in our sample was estimated to be 5 nm, less than the exciton diameter of 15 nm. Our results strongly support the bimodal roughness model proposed by Warwick et al. [Appl. Phys. Lett. 56, 2666 (1990)]. (C) 1996 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ferromagnetic MnSb films were synthesized on Si wafers by physical vapor deposition. X-ray diffraction revealed that the films primarily consisted of MnSb alloy. Nanorods and nanoleaves were observed in the MnSb films by field-emission scanning electron microscopy. These nanorods had an average diameter of 20nm and a length of up to hundreds of nanometers. The nanoleaves had a width and thickness of about 100 and 20nm, respectively. Magnetic hysteresis loops were measured by an alternative gradient magnetometer, and the loops showed strong geometrical anisotropy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Design of the typical laser diode side-pumped Nd:YAG rod system has been discussed using the conventional ray tracing method in this paper. Firstly introduce two basic matrices, refractional and translational matrix, described the transmission of nonparaxial light ray in the medium without concerning the absorption of light. And then, using those matrices, analyze the distribution of pump light in the crystal respectively under the condition of directly pumped system and indirectly pumped system with a cylindrical quartz rod as focusing lens. From the result of simulation, we compare the advantage and disadvantage of the two pumped method, and mainly consider how to select the diameter of the focus lens and cooling tube, indicate the effect of deionized water and cooling tube have on the pump light distribution in the active material. At last, make some conclusions about the side-pumped Nd:YAG laser system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An experimental study on ignition and combustion of single particles was conducted at normal gravity (1-g) and microgravity (l-g) for three high volatile coals with initial diameter of 1.5 and 2.0 mm, respectively. The non-intrusive twin-color pyrometry method was used to retrieve the surface temperature of the coal particle through processing the images taken by a color CCD camera. At the same time, a mathematical model considering thermal conduction inside the coal particle was developed to simulate the ignition process. Both experiments and modeling found that ignition occurred homogeneously at the beginning and then heterogeneously for the testing coal particles burning at l-g. Experimental results confirmed that ignition temperature decreased with increasing volatile content and increasing particle size. However, contradicted to previous studies, this study found that for a given coal with certain particle size, ignition temperature was about 50–80 K lower at l-g than that at 1-g. The model predictions agreed well with the l-g experimental data on ignition temperature. The criterion that the temperature gradient in the space away from the particle surface equaled to zero was validated to determine the commence of homogeneous ignition. Thermal conduction inside the particle could have a noticeable effect for determining the ignition temperature. With the consideration of thermal conduction, the critical size for the phase transient from homogeneous to heterogeneous is about 700 lm at ambient temperature 1500 K and oxygen concentration 0.23. 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Particle velocity distribution in a blowing sand cloud is a reflection of saltation movement of many particles. Numerical analysis is performed for particle velocity distribution with a discrete particle model. The probability distributions of resultant particle velocity in the impact-entrainment process, particle horizontal and vertical velocities at different heights and the vertical velocity of ascending particles are analyzed. The probability distributions of resultant impact and lift-off velocities of saltating particles can be expressed by a log-normal function, and that of impact angle comply with an exponential function. The probability distribution of particle horizontal and vertical velocities at different heights shows a typical single-peak pattern. In the lower part of saltation layer, the particle horizontal velocity distribution is positively skewed. Further analysis shows that the probability density function of the vertical velocity of ascending particles is similar to the right-hand part of a normal distribution function, and a general equation is acquired for the probability density function of non-dimensional vertical velocity of ascending particles which is independent of diameter of saltating particles, wind strength and height. These distributions in the present numerical analysis are consistent with reported experimental results. The present investigation is important for understanding the saltation state in wind-blown sand movement. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dynamic characteristics of slender cable often present serried modes with low frequencies due to large structure flexibility resulted from high aspect ratio (ratio of length to diameter of cable), while the flow velocity distributes non-uniformly along the cable span actually in practical engineering. Therefore, the prediction of the vertex-induce vibration of slender cable suffered from multi-mode and high-mode motions becomes a challenging problem. In this paper a prediction approach based on modal energy is developed to deal with multi-mode lock-in. Then it is applied to the modified wake-oscillator model to predict the VIV displacement and stress responses of cable in non-uniform flow field. At last, illustrative examples are given of which the VIV response of flexible cable in nonlinear shear flow field is analyzed. The effects of flow velocity on VIV are explored. Our results show that both displacement and stress responses become larger as the flow velocity increasing; especially higher stress response companied with higher frequency vibration should be paid enough attention in practical design of SFT because of its remarkable influence on structure fatigue life.