889 resultados para Designing for neighborhoods in Decay
Resumo:
The properties of nuclei belonging to the alpha-decay chain of superheavy element (295)118 have been studied in the framework of axially deformed relativistic mean field (RMF) theory with the parameter set of NL-Z2 in the blocked BCS approximation. Some ground state properties such as binding energies, deformations, and alpha-decay energies Q(alpha) have been obtained and agree well with those from finite-range droplet model (FRDM). The single-particle spectra of nuclei in (295)118 alpha-decay chain show that the shell gaps present obviously nucleon number dependence. The root-mean-square (rms) radii of proton, neutron and matter distributions change slowly from (283)112 to (295)118 but dramatically from (279)110 to (283)112, which may be due to the subshell closure at Z = 110 in (279)110. The alpha-decay half-lives in (295)118 decay chain are evaluated by employing the cluster model and the generalized liquid drop model (GLDM), and the overall agreement is found when they are compared with the known experimental data. The alpha-decay lifetimes obtained from the cluster model are slightly larger than those of GLDM ones. Finally, we predict the alpha-decay half-lives of Z = 118, 116, 114, 112 isotopes using the cluster model and GLDM, which also indicate these two models can corroborate each other in studies on superheavy nuclei. The results from GLDM are always lower than those obtained from the cluster model.
Resumo:
To evaluate the radiative electron capture for the collisions of U89+ ion with N-2, radiative recombination cross sections and the corresponding emitted photon energies are calculated from the ground state 1s(2)2s to 1s(2)2snl(j) (2 <= n <= 9, 0 <= l <= 6) using the newly developed relativistic radiative recombination program RERR06 based on the multiconfiguration Dirac-Fock method. The x-ray spectra for radiative electron capture in the collision have been obtained by convolving the radiative recombination cross sections and the Compton profile of N2. Good agreement is found between the calculated and experimental spectra. In addition, the transition energy levels and probabilities among the 147 levels from the captured 1s(2)2snl(j) have been calculated. From the calculated results, radiative decay cascade processes followed by the radiative electron capture have also been studied with the help of multistep model and coupled rate equations, respectively. The present results not only make us understand the details of the radiative electron captures and the radiative decay cascade spectra in the experiment but also show a more efficient way to obtain the cascade spectra. Finally, the equivalence between the multistep model and coupled rate equations has been shown under a proper condition and the latter can hopefully be extended to investigate other cascade processes.
Resumo:
Baryon magnetic moments of p, n, Sigma(+), Sigma(-), Xi(0), Xi(-) and the beta decay ratios (G(A)/G(V)) of n -> p, Sigma(-) -> n and Xi(0) -> Sigma(+) are calculated in a colored quark cluster model. With SU(3) breaking, the model gives a good fit to the experimental values of those baryon magnetic moments and the beta decay ratios. Our results show that the orbital motion has a significant contribution to the spin and magnetic moments of those baryons and the strange component. in nucleon is small.
Resumo:
The generalized liquid drop model (GLDM), including the proximity effects and centrifugal potential, and the cluster model with Cosh potential are used to study the half-lives of some Z=113 isotopes and their alpha-decay products.The experimental half-lives of (284)113, (283)113, (282)113and their alpha-decay products are well reproduced by the two models when zero angular momenta transfer is assumed. For (278)113 and its alpha-decay products, both the GLDM andthe cluster model could provide satisfactory results if we assume the alpha particle carry five units of angular momenta, which indicates that possible non zero angular momenta transfer and need further experimental measurements with high precision. Finally, we show that half-lives of alpha-decay are quite sensitive to the angular momentum transfers, and a formula could be used to describe the correlation between alpha-decay half-life and angular momentum transfer successfully.
Resumo:
The properties of the nuclei belonging to the newly observed nuclei starting from (288)115 have been studied with the generalized liquid drop model connected with WKB approximation. The calculated results have been compared with the results of the DDM3Y theory and the experimental data. The half lives of this new alpha decay chain have been well tested from the consistence of the macroscopic, microscopic and the experimental data.
Resumo:
The alpha-decay half-lives of nuclei in the ground states and Isomeric states have been calculated within the WKB approximation and Royer's formulas. The barrier in the quasimolecular shape path is determined within a generalized liquid drop model (GLDM). in which the centrifugal potential energy has been introduced to study the unfavored a-decay The agreement between the calculated results and experimental data indicates the reliability of studying alpha-decay of isomeric states with the generalized liquid drop model We find that their is no significant difference of preformation probability between Isomeric states and the corresponding ground states generally in favored alpha-decay Additionally. we extended Royer's formulas by taking account of the role of centrifugal harrier to study the unfavored alpha-decay, and some predicts oil the a decay half-lives of Isomers are made Finally. the effects of angular momontum transfer and Q(alpha) on alpha-decay half-life have been discussed Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved
Resumo:
A four-level decay model in KMgF3:Eu2+ is proposed. The decay profiles of the P-6(7/2) excited state of Eu2+ are biexponential, and the physical implication of each term in the fit equation responsible for the model is interpreted. The evidence obtained spectroscopically for supporting the model is presented. A new method to study energy transfer between Eu2+ and X3+ in KMgF3:Eu-X (X = Gd, Ce, Cr) is established on the basis of the proposed model.
Resumo:
A four-level model of P-6(7/2) excited state of Eu2+ ion in KMgF3: Eu2+ has been proposed. The decay profiles of the P-6(7/2) excited sstate of Eu2+ are two exponential and the physical implication of each term in the fit equation responsible for the model is interpreted. The data obtained spectroscopically are in good agreement with the fit results.
Resumo:
Energy transfer processes between Eu2+ and Gd3+, Cr3+, Ce3+ ions in KMgF3, which are difficult to study spectroscopically, have been investigated by using the proposed four-level decay model of the P-6(7/2) excited state of the Eu2+ ion. Gd3+ and Ce3+ transfer its energy to the vibronic transition of the P-6(7/2) --> S-8(7/2) transition of Eu2+, whereas Cr3+ receive energy from Eu2+ via the d-d interaction. The energy transfer from the Eu2+ 4f(6)5d level to the Ce3+ 4f5d state is observed spectroscopically, and the energy transfer mechanism is discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This report is concerned with the problem of achieving flexibility (additivity, modularity) and efficiency (performance, expertise) simultaneously in one AI program. It deals with the domain of elementary electronic circuit design. The proposed solution is to provide a deduction-driven problem solver with built-in-control-structure concepts. This problem solver and its knowledge base in the applicaitn areas of design and electronics are descrbed. The prgram embodying it is being used to explore the solutionof some modest problems in circuit design. It is concluded that shallow reasoning about problem-solver plans is necessary for flexibility, and can be implemented with reasonable efficiency.
Resumo:
The amount of atmospheric hydrogen chloride (HCl) within fire enclosures produced from the combustion of chloride-based materials tends to decay as the fire effluent is transported through the enclosure due to mixing with fresh air and absorption by solids. This paper describes an HCl decay model, typically used in zone models, which has been modified and applied to a computational fluid dynamics (CFD)-based fire field model. While the modified model still makes use of some empirical formulations to represent the deposition mechanisms, these have been reduced from the original three to two through the use of the CFD framework. Furthermore, the effect of HCl flow to the wall surfaces on the time to reach equilibrium between HCl in the boundary layer and on wall surfaces is addressed by the modified model. Simulation results using the modified HCl decay model are compared with data from three experiments. The model is found to be able to reproduce the experimental trends and the predicted HCl levels are in good agreement with measured values
Resumo:
A design methodology based on numerical modelling, integrated with optimisation techniques and statistical methods, to aid the process control of micro and nano-electronics based manufacturing processes is presented in this paper. The design methodology is demonstrated for a micro-machining process called Focused Ion Beam (FIB). This process has been modelled to help understand how a pre-defined geometry of micro- and nano- structures can be achieved using this technology. The process performance is characterised on the basis of developed Reduced Order Models (ROM) and are generated using results from a mathematical model of the Focused Ion Beam and Design of Experiment (DoE) methods. Two ion beam sources, Argon and Gallium ions, have been used to compare and quantify the process variable uncertainties that can be observed during the milling process. The evaluations of the process performance takes into account the uncertainties and variations of the process variables and are used to identify their impact on the reliability and quality of the fabricated structure. An optimisation based design task is to identify the optimal process conditions, by varying the process variables, so that certain quality objectives and requirements are achieved and imposed constraints are satisfied. The software tools used and developed to demonstrate the design methodology are also presented.
Resumo:
Over latest decade, Reverse Logistics (RL) has gained more and more attention from both industry and academia. In the past, most research on RL has been focused on automobile, electronic waste, computer, paper, package and package material. There is very little research and practice on drug recycling. Nevertheless, it is vital important to properly dispose expired drug because of hazardous contain which may harm to people and environment. In China, public awareness of the harmfulness of expired drugs is still very low and very few efforts have been made to recycle drugs. Therefore, this research aims to build up a conceptual framework to indentify factors of influencing drug recycling in China, from scratch borrowing from existing literature and industry practices in other recycling areas. This framework helps in designing reverse logistic (RL) network and also can provide a useful reference tool for policymakers at the local and national level. Furthermore, a primary research is planed to validate the framework and RL network.