961 resultados para Density measurement (specific gravity)
Resumo:
The Climatological Database for the World's Oceans: 1750-1854 (CLIWOC) project, which concluded in 2004, abstracted more than 280,000 daily weather observations from ships' logbooks from British, Dutch, French, and Spanish naval vessels engaged in imperial business in the eighteenth and nineteenth centuries. These data, now compiled into a database, provide valuable information for the reconstruction of oceanic wind field patterns for this key period that precedes the time in which anthropogenic influences on climate became evident. These reconstructions, in turn, provide evidence for such phenomena as the El Niño-Southern Oscillation and the North Atlantic Oscillation. Of equal importance is the finding that the CLIWOC database the first coordinated attempt to harness the scientific potential of this resource represents less than 10 percent of the volume of data currently known to reside in this important but hitherto neglected source.
Resumo:
The study aimed to unravel the interaction between ocean acidification and solar ultraviolet radiation (UVR) in Chaetoceros curvisetus. Chaetoceros curvisetus cells were acclimated to high CO2 (HC, 1000 ppmv) and low CO2 concentration (control, LC, 380 ppmv) for 14 days. Cell density, specific growth rate and chlorophyll were measured. The acclimated cells were then exposed to PAB (photosynthetically active radiation (PAR) + UV-A + UV-B), PA (PAR + UV-A) or P (PAR) for 60 min. Photochemical efficiency (phi PSII), relative electron transport rate (rETR) and the recovery of ?PSII were determined. HC induced higher cell density and specific growth rate compared with LC. However, no difference was found in chlorophyll between HC and LC. Moreover, phi PSII and rETRs were higher under HC than LC in response to solar UVR. P exposure led to faster recovery of phi PSII, both under HC and LC, than PA and PAB exposure. It appeared that harmful effects of UVR on C. curvisetus could be counteracted by ocean acidification simulated by high CO2 when the effect of climate change is not beyond the tolerance of cells.
Resumo:
A total of 72 eggs from a group of 100 white laying hens housed in standard cages were analyzed. Thirty-six eggs were retired when the hens had 44 week of age and the other 36 eggs were retired eight weeks afterwards. Each group of 36 eggs was radomly divided in three groups of 12 eggs. First group was analyzed at once (storage system C); second one was kept during one week in the refrigerator (5ºC) (storage system R), and third group were kept also one week but on ambient temperature (25ºC) (storage system ET). The hen age, egg weight and storage system had not significant (P>0.05) effect on shell thickness. The specific gravity (SG) has a positive relation with shell quality. The egg class and storage system significantly (P<0,05) affected to SG, while no influence of bird age on this variable was observed. The yolk color increased with hen age but storage system had not effect on this variable. The increase of the hen age and the R and AT storage systems significantly (P<0.05) reduced albumen height (H) and the interaction hen age x storage system was significant (P<0.025) for this variable. The reduction of the H due to R and ET storage systems was higher in the eggs from hens with 52 weeks of age than in those from hens with 44 weeks of age. The Haugh units (HU) was significantly (P<0.05) affected by hen age, egg class and storage system. The hen age increase reduced HU and the R and ET eggs had lower HU than C eggs. It is concluded that the bird age and storage system with high temperatures reduced the egg quality.
Resumo:
A total of 108 eggs from a group of 100 brown laying hens housed in standard cages were analyzed. Thirty-six eggs were retired when the hens had 30 week of age, other 36 eggs were retired when the hens had 35 week of age and the remaining 36 eggs were retired five weeks afterwards. Each group of 36 eggs was radomly divided in three groups of 12 eggs. First group was analyzed at once, second group one was kept during one week in the refrigerator (5°C) and third group was kept also one week but on ambient temperature (25°C). Shell color, shell thickness, specific gravity, albumen height and Haugh units wre obtained. The bird age had significant effect on shell color and shell thickness, but the storage system had not influence on such variables. The hen age had not effect on specific gravity, but the storage system affected to this variable. Hen age and storage system had significant influence (P<0.05) on albumen height and Haugh units, and the interaction age × storage system was significant for these variables. The specific gravity had positive relations with shell thickness, yolk color, albumen height and Haugh units. It is concluded that bird age and storage system under high temperatures reduced the egg quality.
Resumo:
The increase of orbital debris and the consequent proliferation of smaller objects through fragmentation are driving the need for mitigation strategies. The issue is how to deorbit the satellite with an efficient system that does not impair drastically the propellant budget of the satellite and, consequently, reduces its operating life. We have been investigating, in the framework of a European-Community-funded project, a passive system that makes use of an electrodynamics tether to deorbit a satellite through Lorentz forces. The deorbiting system will be carried by the satellite itself at launch and deployed from the satellite at the end of its life. From that moment onward the system operates passively without requiring any intervention from the satellite itself. The paper summarizes the results of the analysis carried out to show the deorbiting performance of the system starting from different orbital altitudes and inclinations for a reference satellite mass. Results can be easily scaled to other satellite masses. The results have been obtained by using a high-fidelity computer model that uses the latest environmental routines for magnetic field, ionospheric density, atmospheric density and a gravity field model. The tether dynamics is modelled by considering all the main aspects of a real system as the tether flexibility and its temperature-dependent electrical conductivity. Temperature variations are computed by including all the major external and internal input fluxes and the thermal flux emitted from the tether. The results shows that a relatively compact and light system can carry out the complete deorbit of a relatively large satellite in a time ranging from a month to less than a year starting from high LEO with the best performance occurring at low orbital inclinations.