965 resultados para Degradation Gradient Method
Resumo:
A simple and sensitive analytical method for simultaneous determination of anastrozole, bicalutamide, and tamoxifen as well as their synthetic impurities, anastrozole pentamethyl, bicalutamide 3-fluoro-isomer, and tamoxifen e-isomer, was developed and validated by using high performance liquid chromatography (HPLC). The separation was achieved on a Symmetry (R) C-8 column (100 x 4.6 mm i.d., 3.5 mu m) at room temperature (+/- 24 degrees C), with a mobile phase consisting of acetonitrile/water containing 0.18% N,N dimethyloctylamine and pH adjusted to 3.0 with orthophosphoric acid (46.5/53.5, v/v) at a flow rate of 1.0 mL min(-1) within 20 min. The detection was made at a wavelength of 270 nm by using ultraviolet (UV) detector. No interference peaks from excipients and relative retention time indicated the specificity of the method. The calibration curve showed correlation coefficients (r) > 0.99 calculated by linear regression and analysis of variance (ANOVA). The limit of detection (LOD) and limit of quantitation (LOQ), respectively, were 2.2 and 6.7 mu g mL(-1) for anastrozole, 2.61 and 8.72 mu g mL(-1) for bicalutamide, 2.0 and 6.7 mu g mL(-1) for tamoxifen, 0.06 and 0.22 mu g mL(-1) for anastrozole pentamethyl, 0.02 and 0.07 mu g mL(-1) for bicalutamide 3-fluoro-isomer, and 0.002 and 0.007 mu g mL(-1) for tamoxifen e-isomer. Intraday and interday relative standard deviations (RSDs) were <2.0% (drugs) and <10% (degradation products) as well as the comparison between two different analysts, which were calculated by f test. (C) 2012 Elsevier B.V. All rights reserved.
Application of Electrochemical Degradation of Wastewater Composed of Mixtures of Phenol-Formaldehyde
Resumo:
The industrial wastewater from resin production plants contains as major components phenol and formaldehyde, which are traditionally treated by biological methods. As a possible alternative method, electrochemical treatment was tested using solutions containing a mixture of phenol and formaldehyde simulating an industrial effluent. The anode used was a dimensionally stable anode (DSAA (R)) of nominal composition Ti/Ru0.3Ti0.7O2, and the solution composition during the degradation process was analyzed by liquid chromatography and the removal of total organic carbon. From cyclic voltammetry, it is observed that for formaldehyde, a small offset of the beginning of the oxygen evolution reaction occurs, but for phenol, the reaction is inhibited and the current density decreases. From the electrochemical degradations, it was determined that 40 mA cm(-2) is the most efficient current density and the comparison of different supporting electrolytes (Na2SO4, NaNO3, and NaCl) indicated a higher removal of total organic carbon in NaCl medium.
Resumo:
The impact of pyretroids, their by-products and degradation products on humans and the environment is recognized as a serious problem. Despite several studies regarding esfenvalerate toxicity and its detection in water and sediments, there is still a lack of information about its degradation intermediates and by-products in water. In this work, an HPLC method was developed to follow up the degradation of esfenvalerate and to detect the intermediates and by-products formed during the chemical degradation process. The chemical degradation was performed using an esfenvalerate suspension and different concentrations of hydrogen peroxide, temperatures, and pH. The reaction was monitored for 24 hr, and during the kinetic experiments, samples were collected at several reaction times and analyzed by HPLC-UV-PAD. In the degradation process, eleven different compounds (intermediate and by-products) were detected, among them the metabolites 3-phenoxybenzoic acid and 3-phenoxybenzaldehyde. HPLC-UV-PAD proved to be a valuable analytical technique for the rapid and reliable separation and determination of esfenvalerate, its degradation intermediates, and by-products.
Resumo:
Targeted regulation of protein levels is an important tool to gain insights into the role of proteins essential to cell function and development. In recent years, a method based on mutated forms of the human FKBP12 has been established and used to great effect in various cell types to explore protein function. The mutated FKBP protein, referred to as destabilization domain (DD) tag when fused with a native protein at the N- or C-terminus targets the protein for proteosomal degradation. Regulated expression is achieved via addition of a compound, Shld-1, that stabilizes the protein and prevents degradation. A limited number of studies have used this system to provide powerful insight into protein function in the human malaria parasite Plasmodium falciparum. In order to better understand the DD inducible system in P. falciparum, we studied the effect of Shld-1 on parasite growth, demonstrating that although development is not impaired, it is delayed, requiring the appropriate controls for phenotype interpretation. We explored the quantified regulation of reporter Green Fluorescent Protein (GFP) and luciferase constructs fused to three DD variants in parasite cells either via transient or stable transfection. The regulation obtained with the original FKBP derived DD domain was compared to two triple mutants DD24 and DD29, which had been described to provide better regulation for C-terminal tagging in other cell types. When cloned to the C-terminal of reporter proteins, DD24 provided the strongest regulation allowing reporter activity to be reduced to lower levels than DD and to restore the activity of stabilised proteins to higher levels than DD29. Importantly, DD24 has not previously been applied to regulate proteins in P. falciparum. The possibility of regulating an exported protein was addressed by targeting the Ring-Infected Erythrocyte Surface Antigen (RESA) at its C-terminus. The tagged protein demonstrated an important modulation of its expression.
Resumo:
Barium praseodymium tungstate (Ba1-xPr2x/3)WO4 crystals with (x = 0, 0.01, and 0.02) were prepared by the coprecipitation method. These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements, Fourier-transform Raman (FT-Raman) and Fourier-transform infrared (FT-IR) spectroscopies. The shape and size of these crystals were observed by field emission scanning electron microcopy (FE-SEM). Their optical properties were investigated by ultraviolet visible (UV-vis) absorption and photoluminescence (PL) measurements. Moreover, we have studied the photocatalytic (PC) activity of crystals for degradation of rhodamine B (RhB) dye. XRD patterns, Rietveld refinements data, FT-Raman and FT-IR spectroscopies indicate that all crystals exhibit a tetragonal structure without deleterious phases. FT-Raman spectra exhibited 13 Raman-active modes in a range from 50 to 1000 cm(-1), while FT-IR spectra have 8 infrared active modes in a range from 200 to 1050 cm(-1). FE-SEM images showed different shapes (bonbon-, spindle-, rice-and flake-like) as well as a reduction in the crystal size with an increase in Pr3+ ions. A possible growth process was proposed for these crystals. UV-vis absorption measurements revealed a decrease in optical band gap values with an increase of Pr3+ into the matrix. An intense green PL emission was noted for (Ba1-xPr2x/3)WO4 crystals (x = 0), while crystals with (x = 0.01 and 0.02) produced a reduction in the wide band PL emission and the narrow band PL emission which is related to f-f transitions from Pr3+ ions. High photocatalytic efficiency was verified for the bonbon-like BaWO4 crystals as a catalyst in the degradation of the RhB dye after 25 min under UV-light. Finally, we discuss possible mechanisms for PL and PC properties of these crystals.
Resumo:
The objective of this study was to evaluate the quality of bovine frozen-thawed sperm cells after Percoll gradient centrifugation. Frozen semen doses were obtained from six bulls of different breeds, including three taurine and three Zebu animals. Four ejaculates per bull were evaluated before and after discontinuous Percoll gradient centrifugation. Sperm motility was assessed by computer-assisted semen analysis and the integrity of the plasma and acrosomal membranes, as well as mitochondrial function, were evaluated using a combination of fluorescent probes propidium iodide, fluorescein isothiocyanate-conjugated Pisum sativum agglutinin and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide. The procedure of Percoll gradient centrifugation increased the percentage of total and progressive sperm motility, beat frequency, rectilinear motility, linearity and rapidly moving cells. In addition, the percentage of cells with intact plasma membrane and mitochondrial membrane potential was increased in post-centrifugation samples. However, the percentage of sperm cells with intact acrosomal membrane was markedly reduced. The method used selected the motile cells with intact plasma membrane and higher mitochondrial functionality in frozen-thawed bull semen, but processing, centrifugation and/or the Percoll medium caused damage to the acrosomal membrane.
Resumo:
Hydroethanolic extracts of C. langsdorffii leaves have therapeutic potential. This work reports a validated chromatographic method for the quantification of polar compounds in the hydroethanolic extract of C. langsdorffii leaves. A reliable HPLC method was developed using two monolithic columns linked in series (100 x 4.6 mm - C-18), with nonlinear gradient elution, and UV detection set at 257 nm. A procedure for the extraction of flavonols was also developed, which involved the use of 70% aqueous ethanol and the addition of benzophenone as the internal standard. The developed method led to a good detection response as the values for linearity were between 10.3 and 1000 mu g/mL, and those for recovery between 84.2 and 111.1%. The detection limit ranged from 0.02 to 1.70 mu g/mL and the quantitation limit from 0.07 to 5.1 mu g/mL, with a maximum RSD of 5.24%. Five compounds, rutin, quercetin-3-O-alpha-L-rhamnopyranoside, kaempferol-3-O-alpha-L-rhamnopyranoside, quercetin and kaempferol, were quantified. This method could, therefore, be used for the quality control of hydroethanolic extracts of Copaifera leaves and their cosmetic and pharmaceutical products.
Resumo:
MgTiO3 (MTO) thin films were prepared by the polymeric precursor method with posterior spin-coating deposition. The films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates and heat treated at 350 degrees C for 2 h and then heat treated at 400, 450, 500, 550, 600, 650 and 700 C for 2 h. The degree of structural order disorder, optical properties, and morphology of the MTO thin films were investigated by X-ray diffraction (XRD), micro-Raman spectroscopy (MR), ultraviolet-visible (UV-vis) absorption spectroscopy, photoluminescence (PL) measurements, and field-emission gun scanning electron microscopy (FEG-SEM) to investigate the morphology. XRD revealed that an increase in the annealing temperature resulted in a structural organization of MTO thin films. First-principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and disordered asymmetric models. The electronic properties were analyzed, and the relevance of the present theoretical and experimental results was discussed in the light of PL behavior. The presence of localized electronic levels and a charge gradient in the band gap due to a break in the symmetry are responsible for the PL in disordered MTO lattice.
Resumo:
Abstract Background The use of lignocellulosic constituents in biotechnological processes requires a selective separation of the main fractions (cellulose, hemicellulose and lignin). During diluted acid hydrolysis for hemicellulose extraction, several toxic compounds are formed by the degradation of sugars and lignin, which have ability to inhibit microbial metabolism. Thus, the use of a detoxification step represents an important aspect to be considered for the improvement of fermentation processes from hydrolysates. In this paper, we evaluated the application of Advanced Oxidative Processes (AOPs) for the detoxification of rice straw hemicellulosic hydrolysate with the goal of improving ethanol bioproduction by Pichia stipitis yeast. Aiming to reduce the toxicity of the hemicellulosic hydrolysate, different treatment conditions were analyzed. The treatments were carried out according to a Taguchi L16 orthogonal array to evaluate the influence of Fe+2, H2O2, UV, O3 and pH on the concentration of aromatic compounds and the fermentative process. Results The results showed that the AOPs were able to remove aromatic compounds (furan and phenolic compounds derived from lignin) without affecting the sugar concentration in the hydrolysate. Ozonation in alkaline medium (pH 8) in the presence of H2O2 (treatment A3) or UV radiation (treatment A5) were the most effective for hydrolysate detoxification and had a positive effect on increasing the yeast fermentability of rice straw hemicellulose hydrolysate. Under these conditions, the higher removal of total phenols (above 40%), low molecular weight phenolic compounds (above 95%) and furans (above 52%) were observed. In addition, the ethanol volumetric productivity by P. stipitis was increased in approximately twice in relation the untreated hydrolysate. Conclusion These results demonstrate that AOPs are a promising methods to reduce toxicity and improve the fermentability of lignocellulosic hydrolysates.
Resumo:
[EN] New TiO2 catalysts have been synthesised by means of a sol–gel method in which aggregates have been selected before thermal treatment. Sieving and calcination temperature have been proved to be key factors in obtaining catalysts with greater photoactivity than that of Degussa P-25. These new catalysts have been characterized by means of transmission electron microscopy (TEM), BET surface area, diffuse reflectance spectroscopy (DRS), UV–vis spectroscopy, Fourier transformed infrared (FTIR) and X-ray diffraction (XRD). The different parameters studied were compared to those obtained from two commercial catalysts (Degussa P-25 and Hombikat-UV100). The photocatalytic efficiency of the new catalysts was evaluated by the degradation of various phenolic compounds using UV light (maximum around 365 nm, 9mW). The catalyst sieved and calcinated at 1023 K, ECT-1023t, showed phenol degradation rates 2.7 times higher than those of Degussa P-25. Also in the degradation of different phenolic compounds, this catalyst showed a higher activity than that of the commercial one. The high photoactivity of this new catalyst has been attributed to the different distribution of surface defects (determined from FTIR studies) and its increased capacity to yield H2O2
Resumo:
Samenausbreitung und Regeneration von Bäumen sind wichtig für den langfristigen Bestand von Baum- und Frugivorengemeinschaften in tropischen Regenwäldern. Zunehmende Rohdung und Degradation gefährden den Ablauf dieser mutualistischen Prozesse in diesem Ökosystem. Um den Einfluss von kleinräumiger menschlicher Störung auf die Frugivorengemeinschaft und die zentralen Ökosystemprozesse Samenausbreitung und Regeneration zu erforschen, habe ich 1) die Frugivorengemeinschaft und die Samenausbreitungsrate von Celtis durandii (Ulmaceae) und 2) den Zusammenhang zwischen Baumarten mit fleischigen Früchten, Frugivoren und der Etablierung von Keimlingen dieser Baumarten in unterschiedlich stark gestörten Flächen dreier ostafrikanischer tropischer Regenwälder untersucht. Insgesamt konnte ich 40 frugivore Vogel- und Primatenarten in den drei untersuchten Waldgebieten nachweisen. Auf gering gestörten Flächen wurden mehr Frugivore als auf stark gestörten Flächen aufgenommen. Auch die Beobachtungen an C. durandii ergaben mehr frugivore Besucher in Bäumen auf gering gestörten als auf stark gestörten Flächen. Dies führte zu einer marginal signifikant höheren Samenausbreitungsrate auf den gering gestörten Flächen. Diese Ergebnisse waren auf regionaler Ebene in allen drei untersuchten Wäldern konsistent. Dies zeigt, dass kleinräumige Störung einen umfassenderen negativen Einfluss auf Frugivore und ihre Funktion als Samenausbreiter hat als zuvor angenommen. Bei der Vegetationserfassung nahm ich 131 verschiedene Baumarten mit fleischigen Früchten in den drei Regenwäldern auf. Kleinräumige menschliche Störung erhöhte den Artenreichtum dieser Baumarten marginal signifikant, hatte jedoch keinen direkten Einfluss auf die Frugivorendichte und den Artenreichtum von Keimlingen dieser Baumarten. Der Artenreichtum von Baumarten mit fleischigen Früchten zeigte einen marginal signifikant positiven Einfluss auf die Frugivorendichte, allerdings nicht auf die Keimlinge. Allerdings führte die Dichte der Frugivoren zu signifikant erhöhtem Artenreichtum der Keimlinge. Folglich scheint kleinräumige Störung die Keimlingsetablierung indirekt durch erhöhten Baumartenreichtum und erhöhte Frugivorendichte zu beeinflussen. Die Frugivorendichte hatte einen größeren Einfluss auf die Waldregeneration als kleinräumige Störung und Baumartenreichtum. Demnach scheint kleinräumige menschliche Störung sowohl positive als auch negative Effekte auf Samenausbreitung und Regeneration zu haben. Somit sind weitere Studien notwendig, die den Einfluss von kleinräumiger menschlicher Störung auf Mutualismen tropischer Regenwälder aufklären.
Resumo:
This thesis was undertaken to explore possible applications of high gradient magnetic separation (HGMS) for the separation of RBCs infected with Plasmodium falciparum, with the dual aim of establishing a novel and superior method for isolating late-stage infected cells, and of obtaining synchronized cell cultures.rnThe presented work presents protocols for HGMS of parasitized RBCs that fulfil these aims. Late-stage parasitized cell can be isolated essentially devoid of contamination with non-infected and ring-stage infected cells. Such an easy method for a highly quantitative and qualitative purification has not yet been reported. Synchronous cultures can be obtained both following depletion of late-stage infected cells, and following isolation of the latter. The quality of synchronization cultures matches that of sorbitol lysis, the current standard method for malaria culture synchronization. An advantage of HGMS is the avoidance of osmotic stress for RBCs. The new methods further have the appeal of high reproducibility, cost-effectiveness, and simple protocol.rnIt should be possible to take the methods beyond Plasmodium infected RBCs. Most magnetic separation techniques in the sector of biomedical research employ columns with a hydrophilic polymer-coated matrix. Our procedure employs an optimized buffer system. Polymer coating becomes unnecessary and uncoated columns are available at a fraction of the cost.
Resumo:
This study investigates the changes in soil fertility due to the different aggregate breakdown mechanisms and it analyses their relationships in different soil-plant systems, using physical aggregates behavior and organic matter (OM) changes as indicators. Three case studies were investigated: i) an organic agricultural soil, where a combined method, aimed to couple aggregate stability to nutrients loss, were tested; ii) a soil biosequence, where OM chemical characterisation and fractionation of aggregates on the basis of their physical behaviour were coupled and iii) a soils sequence in different phytoclimatic conditions, where isotopic C signature of separated aggregates was analysed. In agricultural soils the proposed combined method allows to identify that the severity of aggregate breakdown affected the quantity of nutrients lost more than nutrients availability, and that P, K and Mg were the most susceptible elements to water abrasion, while C and N were mainly susceptible to wetting. In the studied Chestnut-Douglas fir biosequence, OM chemical properties affected the relative importance of OM direct and indirect mechanisms (i.e., organic and organic-metallic cements, respectively) involved in aggregate stability and nutrient losses: under Douglas fir, high presence of carboxylate groups enhanced OM-metal interactions and stabilised aggregates; whereas under Chestnut, OM directly acted and fresh, more C-rich OM was preserved. OM direct mechanism seemed to be more efficient in C preservation in aggregates. The 13C natural abundance approach showed that, according to phytoclimatic conditions, stable macroaggregates can form both around partially decomposed OM and by organic-mineral interactions. In topsoils, aggregate resistance enhanced 13C-rich OM preservation, but in subsoils C preservation was due to other mechanisms, likely OM-mineral interactions. The proposed combined approach seems to be useful in the understanding of C and nutrients fate relates to water stresses, and in future research it could provide new insights into the complexity of soil biophysical processes.
Resumo:
Intense research is being done in the field of organic photovoltaics in order to synthesize low band-gap organic molecules. These molecules are electron donors which feature in combination with acceptor molecules, typically fullerene derivarntives, forming an active blend. This active blend has phase separated bicontinuous morphology on a nanometer scale. The highest recorded power conversionrnefficiencies for such cells have been 10.6%. Organic semiconductors differ from inorganic ones due to the presence of tightly bonded excitons (electron-hole pairs)resulting from their low dielectric constant (εr ≈2-4). An additional driving force is required to separate such Frenkel excitons since their binding energy (0.3-1 eV) is too large to be dissociated by an electric field alone. This additional driving force arises from the energy difference between the lowest unoccupied molecular orbital (LUMO) of the donor and the acceptor materials. Moreover, the efficiency of the cells also depends on the difference between the highest occupied molecular orbital (HOMO) of the donor and LUMO of the acceptor. Therefore, a precise control and estimation of these energy levels are required. Furthermore any external influences that change the energy levels will cause a degradation of the power conversion efficiency of organic solar cell materials. In particular, the role of photo-induced degradation on the morphology and electrical performance is a major contribution to degradation and needs to be understood on a nanometer scale. Scanning Probe Microscopy (SPM) offers the resolution to image the nanometer scale bicontinuous morphology. In addition SPM can be operated to measure the local contact potential difference (CPD) of materials from which energy levels in the materials can be derived. Thus SPM is an unique method for the characterization of surface morphology, potential changes and conductivity changes under operating conditions. In the present work, I describe investigations of organic photovoltaic materials upon photo-oxidation which is one of the major causes of degradation of these solar cell materials. SPM, Nuclear Magnetic Resonance (NMR) and UV-Vis spectroscopy studies allowed me to identify the chemical reactions occurring inside the active layer upon photo-oxidation. From the measured data, it was possible to deduce the energy levels and explain the various shifts which gave a better understanding of the physics of the device. In addition, I was able to quantify the degradation by correlating the local changes in the CPD and conductivity to the device characteristics, i.e., open circuit voltage and short circuit current. Furthermore, time-resolved electrostatic force microscopy (tr-EFM) allowed us to probe dynamic processes like the charging rate of the individual donor and acceptor domains within the active blend. Upon photo-oxidation, it was observed, that the acceptor molecules got oxidized first preventing the donor polymer from degrading. Work functions of electrodes can be tailored by modifying the interface with monomolecular thin layers of molecules which are made by a chemical reaction in liquids. These modifications in the work function are particularly attractive for opto-electronic devices whose performance depends on the band alignment between the electrodes and the active material. In order to measure the shift in work function on a nanometer scale, I used KPFM in situ, which means in liquids, to follow changes in the work function of Au upon hexadecanethiol adsorption from decane. All the above investigations give us a better understanding of the photo-degradation processes of the active material at the nanoscale. Also, a method to compare various new materials used for organic solar cells for stability is proposed which eliminates the requirement to make fully functional devices saving time and additional engineering efforts.
Resumo:
This paper reports an LC-MS/MS method with positive electrospray ionization for the screening of commonly prescribed cardiovascular drugs in human plasma, including compounds with antihypertensive (57), antidiabetic (12), hypolipemiant (5), anticoagulant (2) and platelet anti-aggregation (2) effects. Sample treatment consisted of a simple protein precipitation with MeOH/0.1 M ZnSO₄ (4:1, v/v) solution after the addition of internal standard, followed by evaporation and reconstitution. Analytes separation was performed on a Polar-RP column (150 m x 2 mm, 4 μm) using a gradient elution of 15 min. The MS system was operated in MRM mode, monitoring one quantitation and one confirmation transition for each analyte. The recovery of the protein precipitation step ranged from 50 to 70% for most of the compounds, while some were considerably affected by matrix effects. Since several analytes fulfilled the linearity, accuracy and precision values required by the ICH guidelines, the method proved to be suitable for their quantitative analysis. The limits of quantitation varied from 0.38 to 9.1 μg/L and the limits of detection from 0.12 to 5.34 μg/L. The method showed to be suitable for the detection of plasma samples of patients under cardiovascular treatment with the studied drugs, and for 55 compounds reliable quantitative results could be obtained.