1000 resultados para Deep Sea Drilling Project


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sedimentary rocks of Barremian through early Maestrichtian age recovered on Deep Sea Drilling Project Leg 61 had their principal source in the complex of igneous rocks with which they are interlayered in the Nauru Basin. Relict textures and primary sedimentary structures show these Cretaceous sediments to be of hyaloclastic origin, in part reworked and redeposited by slumps and currents. The dominant composition now is smectite, but locally iron, titanium, and manganese oxides, plagioclase, pyroxene, analcime, clinoptilolite, chalcedonic quartz, cristobalite, amphibole, nontronite, celadonite, and pyrite are also present. The mineral assemblages and the geochemistry reflect the original basaltic composition and its subsequent alteration by one or more processes of submarine weathering, authigenesis, hydrothermal circulation, and contact metamorphism. Hyaloclastitic sandstone, siltstone, and breccia within the sheet flows below 729 meters sub-bottom depth have Barremian fossils, thus establishing the age of the lower, or extrusive, complex of post-ridge-crest volcanism. Similar hyaloclastites between 564 and 729 meters are invaded by hypabyssal sills of the upper igneous complex, and fossil ages of Albian or Cenomanian set an older limit to the age of that second post-ridge-crest episode. Cenomanian to early Campanian sedimentary rocks between 490 and 564 meters have a substantial contribution of clays of submarine-weathered-basalt origin, as well as hydrothermal and pelagic components. The interval of reworked hyaloclastitic siltstone, sandstone, and breccias between 450 and 490 meters is of late Campanian and early Maestrichtian age. These sediments probably formed from glassy basalt that fragmented upon eruption nearby, when sills were being emplaced. In addition to pelagic elements, these Upper Cretaceous volcanogenic sediments include redeposited material of shallow-water origin, apparently derived from the Marshall Islands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recycling of oceanic crust into the deep mantle via subduction is a widely accepted mechanism for creating compositional heterogeneity in the upper mantle and for explaining the distinct geochemistry of mantle plumes. The oxygen isotope ratios (d18O) of some ocean island basalts (OIB) span values both above and below that of unmetasomatised upper mantle (5.5 ± 0.4 per mil) and provide support for this hypothesis, as it is widely assumed that most variations in d18O are produced by near-surface low-temperature processes. Here we show a significant linear relationship between d18O and stable iron isotope ratios (d57Fe) in a suite of pristine eclogite xenoliths. The d18O values of both bulk samples and garnets range from values within error of normal mantle to significantly lighter values. The observed range and correlation between d18O and d57Fe is unlikely to be inherited from oceanic crust, as d57Fe values determined for samples of hydrothermally altered oceanic crust do not differ significantly from the mantle value and show no correlation with d18O. It is proposed that the correlated d57Fe and d18O variations in this particular eclogite suite are predominantly related to isotopic fractionation by disequilibrium partial melting although modification by melt percolation processes cannot be ruled out. Fractionation of Fe and O isotopes by removal of partial melt enriched in isotopically heavy Fe and O is supported by negative correlations between bulk sample d57Fe and Cr content and bulk sample and garnet d18O and Sc contents, as Cr and Sc are elements that become enriched in garnet- and pyroxene-bearing melt residues. Melt extraction could take place either during subduction, where the eclogites represent the residues of melted oceanic lithosphere, or could take place during long-term residence within the lithospheric mantle, in which case the protoliths of the eclogites could be of either crustal or mantle origin. This modification of both d57Fe and d18O by melting processes and specifically the production of low-d18O signatures in mafic rocks implies that some of the isotopically light d18O values observed in OIB and eclogite xenoliths may not necessarily reflect near-surface processes or components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basalts and oceanic andesites from the aseismic Ninetyeast Ridge display trachytic, vesicular and amygdaloidal textures suggesting a subaerial volcanic environment. The normative composition of the Ninetyeast Ridge ranges from olivine picriteto nepheline-normative alkaline basalt, suggesting a wide range of differentiation. This is further supported by the fractionation-differentiation trends displayed by transition metal trace elements (Ni, Cr, V and Cu). The Ninetyeast Ridge rocks are enriched in rare earth (RE) and large ion lithophile (LIL) elements and Sr isotopes (0.7043-0.7049), similar to alkali basalts and tholeiites from seamounts and islands, but different from LIL-element-depleted tholeiitic volcanic rocks of the recent seismic mid-Indian oceanic ridge. The constancy of 87Sr/86Sr ratios for basalts and andesites is compatible with a model involving fractional crystallization of mafic magma. The variation of 87Sr/86Sr ratios between 0.97 and 2.79 may possibly be explained in terms of a primordial hot mantle and/or chemically contrasting heterogeneous mantle source layers relatively undepleted in LIL elements at different periods in the geologic past. In general, the Sr isotopic data for rocks from different tectonic environments are consistent with a "zoning-depletion model" with systematically arranged alternate alkali-poor and alkali-rich layers in the mantle beneath the Indian Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic foraminifers of the Coniacian-Santonian through the Paleocene were recovered from a continuous pelagic carbonate section from Hole 516F on the Rio Grande Rise. Sixty-five genera and 153 species have been identified, most of which have been reported from other localities. Bathyal depths are reflected in the benthic assemblages dominated by gavelinellids (Gavelinella beccariiformis, G. velascoensis), Nuttallides truempyi, and various gyroidinids and buliminids. Rapid subsidence during the Coniacian-Santonian from nearshore to upper to middle bathyal depths was followed by much reduced subsidence, with the Campanian-Paleocene interval accumulating at middle bathyal to lower bathyal depths. A census study based on detailed sampling reveals major changes in benthic faunal composition at the Cretaceous/Tertiary boundary transition. It was a time of rapid turnover, with the extinctions of numerous species and the introduction of many new species. Overall, species diversity decreases about 20%, and approximately one-third of latest Maestrichtian species do not survive to the end of the Cretaceous. This shift indicates a significant environmental change in the deep sea, the precise nature of which is not apparent from the foraminifers or their enclosing sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic properties of doleritic and some metamorphic basement rocks underlying Catoche Knoll are studied. Doleritic rocks show a high saturation magnetic moment (2-5 emu/g) compared to metamorphic rocks (0.1-1 emu/g). Magnetic minerals of rocks from this hole show a high stability when heated in vacuo up to 600°C at a fixed rate of heating. Curie temperatures are distributed close to 550°C. These properties differ markedly from those of common submarine basalts observed before. X-ray microprobe analysis techniques were used to determine internal structures of ferromagnetic minerals; in most of ferromagnetic minerals there exist two different types of magnetic phases (i.e., products of high-temperature and low-temperature oxidations). Interpretations on the coexisting, seemingly contradictory, phases can be made based upon present analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fact that the natural remanent magnetization (NRM) intensity of mid-oceanic-ridge basalt (MORB) samples shows systematic variations as a function of age has long been recognized: maximum as well as average intensities are generally high for very young samples, falling off rather rapidly to less than half the recent values in samples between 10 and 30 Ma, whereupon they slowly rise in the early Tertiary and Cretaceous to values that approach those of the very young samples. NRM intensities measured in this study follow the same trends as those observed in previous publications. In this study, we take a statistical approach and examine whether this pattern can be explained by variations in one or more of all previously proposed mechanisms: chemical composition of the magnetic minerals, abundance of these magnetization carriers, vectorial superposition of parallel or antiparallel components of magnetization, magnetic grain or domain size patterns, low-temperature oxidation to titanomaghemite, or geomagnetic field behavior. We find that the samples do not show any compositional, petrological, rock-magnetic, or paleomagnetic patterns that can explain the trends. Geomagnetic field intensity is the only effect that cannot be directly tested on the same samples, but it shows a similar pattern as our measured NRM intensities. We therefore conclude that the geomagnetic field strength was, on-average, significantly greater during the Cretaceous than during the Oligocene and Miocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Qualitative and quantitative analyses of planktonic foraminiferal assemblages from Deep Sea Drilling Project site 532 shed light on hydrographic changes over the Walvis Ridge during the past 500,000 years. From changes in distribution of foraminiferal assemblages, two major hydrographic regimes (coastal and geostrophic branches of the Benguela Current and the Angola Current) can be distinguished at site 532. It is suggested that the hydrographic situation on the northeastern Walvis Ridge was characterized by intensified upwelling and a westward expansion of the coastal upwelling cells during several global cooling pulses. During glacial stages 2-4, the middle part of stage 6, sporadically from the lower stage 8 through upper stage 10, and during stage 12, site 532 was located beneath the coastal branch of the Benguela Current because faunal distribution patterns indicate intensified upwelling. The Angola Current probably intruded the area of study during the lower stages 5, sporadically 6-8, and 11, as documented by the increased abundance of Neogloboquadrina dutertrei.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cretaceous lava flows overlie Jurassic to Early Cretaceous oceanic crust in the Nauru Basin of the western equatorial Pacific, but their exact age and origin is controversial. In one model, they are generically related to volcanism forming the Ontong Java Plateau. However, paleomagnetic data from basalts recovered by ocean drilling in the Nauru Basin have been interpreted as recording numerous geomagnetic reversals, suggesting the Nauru Basin basalts are older than the Early Aptian flows on the Ontong Java Plateau, and the correlative volcanism seen in the western equatorial and southwestern Pacific Ocean basin. Here, we examine the magnetic fidelity of the Nauru Basin basalts through rock magnetic and paleomagnetic approaches. We find the magnetic carriers in the lavas are unlike most basaltic units recovered by oceanic drilling in that they are magnetically soft. This quality makes the rocks especially prone to the acquisition of secondary magnetic components induced during drilling. We demonstrate that the reversed polarity intervals are illusory, and instead record subtle changes in magnetic hardness that result in partial and complete overprinting by the magnetic field associated with the drill string (e.g., the core barrel, drill pipe and bit). The recognition of these magnetic overprints, the identification of only normal polarity in the Nauru Basin basalts, and a critical consideration of the available radiometric and biostratigraphic age data lead us to conclude that coeval formation of the Nauru Basin basalts and Ontong Java Plateau in Aptian times remains a viable hypothesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The D/H, 18O/16O and 87Sr/86Sr ratios of the basaltic basement from the Leg 83 section of DSDP Hole 504B show that in that area the oceanic crust has experienced intensive but not pervasive alteration. Isotope ratios of the basalts are very heterogeneous because of an input of oxygen, hydrogen, and strontium from seawater. The hydrogen isotopic composition of many samples displays the complete thermal history of the water-rock interactions. High-temperature mineral formations (actinolites, epidotes, and chlorites) were overgrown by a mineralization at lower temperatures (mixedlayer smectites, iddingsites, and smectites) during successive stages of cooling of the oceanic crust by cold seawater. From 87Sr/86Sr data bulk water/rock ratios up to 5:1 have been calculated. There is evidence that some primary minerals like high-An plagioclases contain oxygen from altered basalts. We have discussed the probability that there existed a seawater/crust interface, now at a depth of 620 m sub-basement, during the high-temperature water/rock interactions. This interface was covered during later magmatism by thick flows, pillow lavas, and intrusives.