875 resultados para Decomposição de matriz
Resumo:
The 15Kh2MFA steel is a kind of Cr-Mo-V family steels and can be used in turbines for energy generation, pressure vessels, nuclear reactors or applications where the range of temperature that the material works is between 250 to 450°C. To improve the properties of these steels increasing the service temperature and the thermal stability is add a second particle phase. These particles can be oxides, carbides, nitrites or even solid solution of some chemical elements. On this way, this work aim to study the effect of addition of 3wt% of niobium carbide in the metallic matrix of 15Kh2MFA steel. Powder metallurgy was the route employed to produce this metallic matrix composite. Two different milling conditions were performed. Condition 1: milling of pure 15Kh2MFA steel and condition 2: milling of 15Kh2MFA steel with addition of niobium carbide. A high energy milling was carried out during 5 hours. Then, these two powders were sintered in a vacuum furnace (10-4torr) at 1150 and 1250°C during 60 minutes. After sintering the samples were normalized at 950°C per 3 minutes followed by air cooling to obtain a desired microstructure. Results show that the addition of niobium carbide helps to mill faster the particles during the milling when compared with that steel without carbide. At the sintering, the niobium carbide helps to sinter increasing the density of the samples reaching a maximum density of 7.86g/cm³, better than the melted steel as received that was 7,81g/cm³. In spite this good densification, after normalizing, the niobium carbide don t contributed to increase the microhardness. The best microhardness obtained to the steel with niobium carbide was 156HV and to pure 15Kh2MFA steel was 212HV. It happened due when the niobium carbide is added to the steel a pearlitic structure was formed, and the steel without niobium carbide submitted to the same conditions reached a bainitic structure
Resumo:
Extractivism mineral is considered an activity highly degrading, due to the large volume of material that he moves in the form of ore and residues. The vast majority of mining companies do not show any technology or economically viable application that will allow the recycling of mineral residue, these being launched in areas receiving located the "open skies" degrade the environment. In Rio Grande do Norte to the production of ceramic red restricts their activities to the production of products such as: solid bricks, ceramic blocks, tiles, among others. Seeking to unite experiences and technical information that favor sustainable development, with important benefits to the construction sector and civil society in general, the present work studies the incorporation of the residue of scheelite in ceramic matrix kaolinitic, coming from the municipality of Boa Saúde - RN, in percentage of 5 %, 10 %, 20 %, 30% 40% and 50 %, by evaluating its microstructure, physical properties and formulation. The raw materials were characterized through the trials of X ray fluorescence, Diffraction of X rays, Differential Thermal Analysis and Termogravimetric Analysis. The samples were formed and fired at temperatures of 850o, 900o, 1000o, 1050o, 1100o, 1150o and 1200 oC, with isotherm of 1 hour and heating rate of 10 oC/min. Assays were performed technological of loss to fire, Water Absorption, Apparent Porosity, Apparent Density, Mass Loss in Fire and Bending Resistance; in addition to the Scanning Electron Microscopy, analyzing their physical and mechanical properties. The use of residue of scheelite in ceramic mass kaolinitic provided a final product with technological properties that meet the technical standards for the production of bricks and roofing tiles, with the percentage of 20% of waste that showed the best results
Resumo:
This work aims at obtaining nanoparticles of iron oxide, the magnetite one (Fe3O4), via synthesis by thermal decomposition through polyol. Thus, two routes were evaluated: a simple decomposition route assisted by reflux and a hydrothermal route both without synthetic air atmosphere using a synthesis temperature of 260ºC. In this work observed the influence of the observe of surfactants which are generally applied in the synthesis of iron oxide nanoparticles decreasing cluster areas. Further, was observed pure magnetite phase without secondary phases generally found in the iron oxide synthesis, a better control of crystallite size, morphology, crystal structure and magnetic behavior. Finally, the introduction of hydroxyl groups on the nanoparticles surface was analyzed besides its employment in the polymer production with OH radicals. The obtained materials were characterized by XRD, DLS, VSM, TEM, TG and DSC analyses. The results for the magnetite obtainment with a particle size greater than 5 nm and smaller than 11 nm, well defined morphology and good magnetic properties with superparamagnetic behavior. The reflux synthesis was more efficient in the deposition of the hydroxyl groups on the nanoparticles surface
Resumo:
In recent decades have seen a sharp growth in the study area of nanoscience and nanotechnology and is included in this area, the study of nanocomposites with self-cleaning properties. Since titanium dioxide (TiO2) has high photocatalytic activity and also antimicrobial, self-cleaning surfaces in your application has been explored. In this study a comparison was made between two synthesis routes to obtain TiO2 nanoparticles by hydrothermal method assisted by microwave. And after analysis of XRD and SEM was considered the best material for use in nanocomposites. It was deposited nanocomposite film of poly (dimethyl siloxane) (PDMS) with 0.5, 1, 1.5 and 2% by weight of nanoparticles of titanium dioxide (TiO2) by the spraying method. The nanocomposite was diluted with hexane and the suspension was deposited onto glass substrate, followed by curing in an oven with forced air circulation. The photocatalytic activity of the nanocomposite impregnated with methylene blue was evaluated by UV- vis spectroscopy from the intensity variation of absorption main peak at 660nm with time of exposure to the UV chamber. Changes in the contact angle and microhardness were analyzed before and after UV aging test. The effect of ultraviolet radiation on the chemical structure of the PDMS matrix was evaluated by spectrophotometry Fourier transform infrared (FTIR).The results indicated that the addition of TiO2 nanoparticles in the coating PDMS gave high photocatalytic activity in the decomposition of methylene blue, an important characteristic for the development of self-cleaning coatings
Resumo:
Steel is an alloy EUROFER promising for use in nuclear reactors, or in applications where the material is subjected to temperatures up to 550 ° C due to their lower creep resistance under. One way to increase this property, so that the steel work at higher temperatures it is necessary to prevent sliding of its grain boundaries. Factors that influence this slip contours are the morphology of the grains, the angle and speed of the grain boundaries. This speed can be decreased in the presence of a dispersed phase in the material, provided it is fine and homogeneously distributed. In this context, this paper presents the development of a new material metal matrix composite (MMC) which has as starting materials as stainless steel EUROFER 97, and two different kinds of tantalum carbide - TaC, one with average crystallite sizes 13.78 nm synthesized in UFRN and another with 40.66 nm supplied by Aldrich. In order to improve the mechanical properties of metal matrix was added by powder metallurgy, nano-sized particles of the two types of TaC. This paper discusses the effect of dispersion of carbides in the microstructure of sintered parts. Pure steel powders with the addition of 3% TaC UFRN and 3% TaC commercial respectively, were ground in grinding times following: a) 5 hours in the planetary mill for all post b) 8 hours of grinding in the mill Planetary only for steel TaC powders of commercial and c) 24 hours in the conventional ball mill mixing the pure steel milled for 5 hours in the planetary mill with 3% TaC commercial. Each of the resulting particulate samples were cold compacted under a uniaxial pressure of 600MPa, on a cylindrical matrix of 5 mm diameter. Subsequently, the compressed were sintered in a vacuum furnace at temperatures of 1150 to 1250 ° C with an increment of 20 ° C and 10 ° C per minute and maintained at these isotherms for 30, 60 and 120 minutes and cooled to room temperature. The distribution, size and dispersion of steel and composite particles were determined by x-ray diffraction, scanning electron microscopy followed by chemical analysis (EDS). The structures of the sintered bodies were observed by optical microscopy and scanning electron accompanied by EDS beyond the x-ray diffraction. Initial studies sintering the obtained steel EUROFER 97 a positive reply in relation to improvement of the mechanical properties independent of the processing, because it is obtained with sintered microhardness values close to and even greater than 100% of the value obtained for the HV 333.2 pure steel as received in the form of a bar
Resumo:
Epoxy based nanocomposites with 1 wt % and 3 wt % of nanographite were processed by high shear mixing. The nanographite was obtained by chemical (acid intercalation), thermal (microwave expansion) and mechanical (ultrasonic exfoliation) treatments. The mechanical, electrical and thermal behavior of the nanocomposites was determined and evaluated as a function of the percentage of reinforcement. According to the experimental results, the electrical conductivity of epoxy was not altered by the addition of nanographite in the contents evaluated. However, based on the mechanical tests, nanocomposites with addition of 1 wt.% and 3 wt.% of nanographite showed increase in tensile strength of 16,62 % and 3,20 %, respectively, compared to the neat polymer. The smaller increase in mechanical strength of the nanocomposite with 3 wt.% of nanographite was related to the formation of agglomerates. The addition of 1 wt.% and 3 wt.% of nanographite also resulted in a decrease of 6,25 % and 17,60 %, respectively, in the relative density of the material. Thus, the specific strength of the nanocomposites was approximately 33,33 % greater when compared to the neat polymer. The addition of 1 wt.% and 3 wt.% of nanographite in the material increased the mean values of thermal conductivity in 28,33 % and 132,62 %, respectively, combined with a reduction of 26,11 % and 49,80 % in volumetric thermal capacity, respectively. In summary, it has been determined that an addition of nanographite of the order of 1 wt.% and 3 wt.% produced notable elevations in specific strength and thermal conductivity of epoxy
Resumo:
Carbide reinforced metallic alloys potentially improve some important mechanical properties required for the overall use of important engineering materials such as steel and nickel. Nevertheless, improved performance is achieved not only by composition enhancement but also by adequate processing techniques, such as novel sintering methods in the case of powder metallurgy. The method minimizes energy losses in addition to providing uniform heating during sintering. Thus, the general objective of this study was to evaluate the density, hardness, flexural strength, dilatometric behavior and to analyze the microstructure of metal matrix composites based nickel with addition of carbides of tantalum and / or niobium when sintered in a conventional furnace and Plasma assisted debinding and sintering (PADS). Initially, were defineds best parameters of granulation, screening and mixing procedure. After, mixtures of carbonyl Ni and 5%, 10% and 15 wt.% NbC and TaC were prepared in a Y-type mixer under wet conditions during 60 minutes. The mixtures were then dried and granulated using 1.5 wt. % paraffin diluted in hexane. Granulates were cold pressed under 600 MPa. Paraffin was then removed from the pressed pellets during a pre-sintering process carried out in a tubular furnace at 500 °C during 30 min. The heating rate was 3 ºC/min. The pellets were then sintered using either a plasma assisted reactor or a conventional resistive tubular furnace. For both methods, the heating rate was set to 8 ºC/min up to 1150 °C. The holding time was 60 minutes. The microstructure of the sintered samples was evaluated by SEM. Brinell hardness tests were also carried out. The results revealed that higher density and higher hardness values were observed in the plasma-assisted sintered samples. Hardness increased with the concentration of carbides in the Ni-matrix. The flexural strength also increased by adding the carbides. The decline was larger for the sample with addition of 5% 5% TaC and NbC. In general, compositions containing added carbide 10% showed less porous and more uniform distribution of carbides in the nickel matrix microstructural appearance. Thus, both added carbide and plasma sintering improved density, hardness, flexural strength and microstructural appearance of the composites
Resumo:
This research was motivated by the requirement of asbestos s replacement in building systems and the need to generate jobs and income in the country side of the state of Bahia, Brazil. The project aimed at using fibers from licuri leaves (syagrus coronata), an abundant palm in the region, to produce composites appropriate for the sustainable production of cement fibre reinforced products in small plants. The composites were produced in laboratory using Portland cement CP-II-F32, sand, water, licuri palm fiber contents of 1.0, 1.5 and 2.0% by weight of binder (two different fiber length) and metakaolin. The latter was chosen as an additional binder for its efficiency to reduce the alkalinity of cementitious matrixes therefore preventing the degradation of vegetable fibers. The characterization of the composite components was carried out by sieving and laser particle size analyses, thermal analysis, fluorescence and X-ray diffraction. The composites performance was evaluated by 3- point-bending tests, compressive strength, ultrasound module of elasticity, free and restrained shrinkage, water capillarity absorption and apparent specific gravity. It has been found that the addition of fibers increased the time to onset of cracking over 200.00% and a 25% reduction in cracks opening in the restrained shrinkage test. The capillary absorption reduced about 25% when compared to fiber-free composites. It was also observed with regard to flexural strength, compressive strength and specific gravity, that the addiction of fibers did not affect the composite performance presenting similar results for compounds with and without fibers. In general it can be stated that the reinforced composite fibers of palm licuri presents physical and mechanical characteristics which enable them to be used in the intended proposals of this research
Resumo:
The seismic processing technique has the main objective to provide adequate picture of geological structures from subsurface of sedimentary basins. Among the key steps of this process is the enhancement of seismic reflections by filtering unwanted signals, called seismic noise, the improvement of signals of interest and the application of imaging procedures. The seismic noise may appear random or coherent. This dissertation will present a technique to attenuate coherent noise, such as ground roll and multiple reflections, based on Empirical Mode Decomposition method. This method will be applied to decompose the seismic trace into Intrinsic Mode Functions. These functions have the properties of being symmetric, with local mean equals zero and the same number of zero-crossing and extremes. The developed technique was tested on synthetic and real data, and the results were considered encouraging
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study aimed to establish patterns of dynamics of litter and redistribution of rainfall of Caatinga vegetation. Sampling was done monthly for twenty three months in four areas: degraded, successional primary stage, secondary stage and late stage. We installed 72 collectors of 1.0 mx 1.0 m, with nylon fabric background in three areas. Litter deposited was fractionated into leaves, twigs, reproductive structures and miscellaneous, dried and weighed. To assess the stock of accumulated litter we used metal frame with dimensions of 0.5 mx 0.5 m, thrown randomly and collected monthly, taken to the laboratory for oven drying and weighed. To evaluate the decomposition, 40g of litter were placed in nylon bags (litterbags) mesh 1 mm ², dimensions 20.0 x 20.0 cm, being distributed on the soil surface and removed monthly, cleaned, dried and weighed. To evaluate the contribution of rainfall we used interceptometers installed 1.0 m above the ground surface, distributed under the canopy of six species of the caatinga, which evaluated the stemflow through collecting system installed around the stems of these species. The deposition of litter in the primary stage was 2.631,26 kg ha-1; 3.144,89 kg ha-1 in the secondary stage; 3.144,89 kg ha-1 in the late stage. The fraction of leaves was the largest contributor to the formation of litter in three stages. The degraded area showed greater accumulation of litter and decomposition has been sluggish during the dry period. We conclude that occurred greater litterfall in later stages. The late successional stage showed faster decomposition of litter, the evidence that is a better use of litter in nutrient cycling processes and incorporation of organic matter to the soil. The time required to decompose 50 % of the litter in the later stages of succession was lower indicating greater speed of release and reuse of nutrients by the vegetation. The specie jurema preta with less leaf area and consists of leaflets, showed greater internal precipitation in rain events of greater magnitude. The stemflow was not influenced by DAP and basal area. The water lost by trapping represented the largest proportion of total rainfall in all species studied
Resumo:
The decomposition process exercises an extensive control over the carbon cycle, affecting its availability and nutrient cycling in terrestrial ecosystems. The understanding of leaf decomposition patterns above the soil and fine roots decomposition below the soil is necessary and essential to identify and quantify more accurately the flow of energy and matter in forest systems. There is still a lack of studies and a large gap in the knowledge about what environmental variables act as local determinants over decomposition drivers. The knowledge about the decomposition process is still immature for Brazilian semiarid region. The aim of this study was to analyze the decomposition process (on leaves and fine roots) of a mixture of three native species for 12 months in a semiarid ecosystem in Northeast Brazil. We also examined whether the rate of decomposition can be explained by local environmental factors, specifically plant species richness, plant density and biomass, soil macro-arthropods species richness and abundance, amount of litterfall and fine root stock. Thirty sampling points were randomly distributed within an area of 2000 m x 500 m. To determine the decomposition rate, the litterbag technique was used and the data analysis were made with multiple regressions. There was a high degradation of dead organic matter along the experiment. Above ground plant biomass was the only environmental local factor significantly related to leaf decomposition. The density of vegetation and litter production were positively and negatively related to decay rates of fine roots, respectively. The results suggest that Caatinga spatial heterogeneity may exert strong influences over the decomposition process, taking into account the action of environmental factors related to organic matter exposure of and the consequent action of solar radiation as the decomposition process main controller in this region
Resumo:
Studies on the effects of changes in biodiversity and ecosystem functioning have been a central theme in ecology over the past two decades. Several studies have showed that the diversity of plant debris differently affects the decomposition process in aquatic and terrestrial environments, but we know very about the effects of detritus diversity on decomposition under fluctuating environmental conditions. We tested whether and how the environmental contexts, as well as the dynamic of their alternation, influence the effects of detritus diversity on the decomposition process. We performed a field experiment where we manipulate the litter diversity of 8 species of terrestrial plants decomposing (litterbags) in single and in mixture containing the eight species together in three different environmental contexts: the terrestrial environment (T), aquatic (A) and interface (I) - experimental treatment that simulates variation in flooding regime. We measured the rate of decomposition through the loss of mass of the community and each individual detritus in monocultures and mixtures. Species richness and environmental variability had no effects on the magnitude and stability of the decomposition process. However, there were significant diversity effects on the decomposition of an individual alien species, F. benjamina. Environmental context had significant effects on the magnitude and variability of decomposition. Detritus decomposition was faster and more variable on aquatic, interface and terrestrial conditions, respectively. Our results demonstrate that the diversity of plant detritus has minor effects to the decomposition across disparate environmental conditions and suggest that it is necessary to consider the potential of other abiotic factors in affect the magnitude and variability of the decomposition processes
Resumo:
O sistema plantio direto preconiza o uso de culturas de cobertura para produção de massa seca sobre o solo. O presente trabalho teve por objetivo estudar a produção e a taxa de decomposição de duas coberturas vegetais - crotalária juncea (Crotalária juncea L.) e mucuna-cinza (Stilozobium niveum L) - em três sistemas de manejo (rolo-faca, triturador de palhas e herbicida), e a capacidade de campo efetiva dos manejos. O experimento foi realizado na área do Laboratório de Máquinas e Mecanização Agrícola (LAMMA), do Departamento de Engenharia Rural, UNESP, Jaboticabal - SP, com delineamento em blocos ao acaso, em esquema fatorial 3x2, originando seis tratamentos, com quatro repetições. Foram analisadas as produções de massa seca das culturas de cobertura antes e após o manejo, a velocidade de deslocamento e a capacidade de campo efetiva para cada conjunto (trator-equipamento). As análises dos valores obtidos permitiram verificar que o fator manejo não interfere na decomposição da massa seca das coberturas vegetais e que as duas culturas de cobertura apresentaram massas semelhantes aos 30; 70 e 125 dias após a semeadura, diferindo aos 97 dias, época na qual a crotalária apresentou maior quantidade de massa seca. Aos 30; 51 e 71 dias após o manejo, as massas secas das culturas foram semelhantes. O manejo com herbicida apresentou maior capacidade de campo efetiva.
Resumo:
The contemporary conjuncture based on the capitalistic knowledge converges to the corporal consciousness that makes us see, feel, taste and hear, be in/to pieces. Disembodied reason legitimate and legislate ways of being and living socially and its development is the dehumanization of human relations causing pain and suffering. The objective of this work is to discuss the body as pedagogical matrix through imagistic/artistic elements: music, painting and literature. Metaphors lead to self knowledge of human subjectivity and approach us to the kaleidoscope of sensitive knowledge and enables learning to learn with the infinite combinations of images, knowledge, feelings and worldviews. The song Memória da Pele comes in the voice of Maria Betânia speak of the memories that are not mine, but are tattooed in me in the memory of skin, singing the memories of a love lived by who tries to forget rationally, but the body insists on remembering. It is password to think about what we are. The short story by Clarice Lispector, entitled Miss Algarve, narrates the life story of an unmarried and virgin woman, and her encounter with an alien called Ixtlan. Until then, she who lived as if every day were a Monday, found herself seduced by the pleasure of having a body in contact with another body, which also allowed her to give visibility to the bodies of others. She had repudiation by the immorality that her body and the other s perspired. The discovery of the body brings important lessons for nursing, involving our body and the others'. The painting the flying bed or Henry Ford Hospital, by Frida Kahlo, is our final metaphor. The traumatic experience of abortion is shown in this painting trough the picture of the artist naked in a hospital bed. This painting invites us to reflect on our work process. We need to think in multiple dimensions of the being and accept the invitation of art, so that the lightness confronts us with the weight imposed by the hegemonic ideology. I believe it is not a single view, but the many views that should justify the knowledge and practices of nursing; what matters is that they are woven into the dialogue, democracy, provided that protagonism of those individuals involved in this process, in the wandering and uncertainty, in the rewiring, solidarity, plurality. To this end, the body must be the great pedagogue that is able to be viewed not as a tapestry seen by the right view, as the logical knowledge sees, but seen by the opposite side in its singular, irregular, discontinuous weavings