819 resultados para Decision systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To remain competitive, many agricultural systems are now being run along business lines. Systems methodologies are being incorporated, and here evolutionary computation is a valuable tool for identifying more profitable or sustainable solutions. However, agricultural models typically pose some of the more challenging problems for optimisation. This chapter outlines these problems, and then presents a series of three case studies demonstrating how they can be overcome in practice. Firstly, increasingly complex models of Australian livestock enterprises show that evolutionary computation is the only viable optimisation method for these large and difficult problems. On-going research is taking a notably efficient and robust variant, differential evolution, out into real-world systems. Next, models of cropping systems in Australia demonstrate the challenge of dealing with competing objectives, namely maximising farm profit whilst minimising resource degradation. Pareto methods are used to illustrate this trade-off, and these results have proved to be most useful for farm managers in this industry. Finally, land-use planning in the Netherlands demonstrates the size and spatial complexity of real-world problems. Here, GIS-based optimisation techniques are integrated with Pareto methods, producing better solutions which were acceptable to the competing organizations. These three studies all show that evolutionary computation remains the only feasible method for the optimisation of large, complex agricultural problems. An extra benefit is that the resultant population of candidate solutions illustrates trade-offs, and this leads to more informed discussions and better education of the industry decision-makers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study set out to test the hypothesis through field and simulation studies that the incorporation of short-term summer legumes, particularly annual legume lablab (Lablab purpureus cv. Highworth), in a fallow-wheat cropping system will improve the overall economic and environmental benefits in south-west Queensland. Replicated, large plot experiments were established at five commercial properties by using their machineries, and two smaller plot experiments were established at two intensively researched sites (Roma and St George). A detailed study on various other biennial and perennial summer forage legumes in rotation with wheat and influenced by phosphorus (P) supply (10 and 40 kg P/ha) was also carried out at the two research sites. The other legumes were lucerne (Medicago sativa), butterfly pea (Clitoria ternatea) and burgundy bean (Macroptilium bracteatum). After legumes, spring wheat (Triticum aestivum) was sown into the legume stubble. The annual lablab produced the highest forage yield, whereas germination, establishment and production of other biennial and perennial legumes were poor, particularly in the red soil at St George. At the commercial sites, only lablab-wheat rotations were experimented, with an increased supply of P in subsurface soil (20 kg P/ha). The lablab grown at the commercial sites yielded between 3 and 6 t/ha forage yield over 2-3 month periods, whereas the following wheat crop with no applied fertiliser yielded between 0.5 to 2.5 t/ha. The wheat following lablab yielded 30% less, on average, than the wheat in a fallow plot, and the profitability of wheat following lablab was slightly higher than that of the wheat following fallow because of greater costs associated with fallow management. The profitability of the lablab-wheat phase was determined after accounting for the input costs and additional costs associated with the management of fallow and in-crop herbicide applications for a fallow-wheat system. The economic and environmental benefits of forage lablab and wheat cropping were also assessed through simulations over a long-term climatic pattern by using economic (PreCAPS) and biophysical (Agricultural Production Systems Simulation, APSIM) decision support models. Analysis of the long-term rainfall pattern (70% in summer and 30% in winter) and simulation studies indicated that ~50% time a wheat crop would not be planted or would fail to produce a profitable crop (grain yield less than 1 t/ha) because of less and unreliable rainfall in winter. Whereas forage lablab in summer would produce a profitable crop, with a forage yield of more than 3 t/ha, ~90% times. Only 14 wheat crops (of 26 growing seasons, i.e. 54%) were profitable, compared with 22 forage lablab (of 25 seasons, i.e. 90%). An opportunistic double-cropping of lablab in summer and wheat in winter is also viable and profitable in 50% of the years. Simulation studies also indicated that an opportunistic lablab-wheat cropping can reduce the potential runoff+drainage by more than 40% in the Roma region, leading to improved economic and environmental benefits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The article discusses a new decision support process for forestry pest management. Over the past few years, DSS have been introduced for forestry pest management, providing forest growers with advice in areas such as selecting the most suitable pesticide and relevant treatment. Most of the initiatives process knowledge from various domains for providing support for specific decision making problems. However, very few studies have identified the requirements of developing a combined process model in which all relevant practitioners can contribute and share knowledge for effective decision making; such an approach would need to include the decision makers’ perspective along with other relevant attributes such as the problem context and relevant policies. We outline a decision support process for forestry pest management, based on the design science research paradigm, in which a focus group technique has application to acquire both expert and practical knowledge in order to construct the DSS solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forest destruction for agriculture continues to be a major threat to the rich biological diversity in the East Usambara Mountains in the north-eastern corner of Tanzania. The highest ratio of endemic plant and animal species found on 100 km2 anywhere in the world is depending on the remaining natural forests. Forests are vitally important for the local population in many different ways, and nationally they are an important source of water and hydroelectricity. The soils, of low fertility and mostly acidic Ferrasols, mainly have the nutrients in the topsoil. After clear-cutting, the soils soon become poor when the topsoil is eroded. High-value cardamom is nowadays unsustainably cultivated in the natural forests of the East Usambaras. The general aim was to study the possibilities to develop new profitable and sustainable agroforestry systems for the benefit of the local people that could contribute to relieving the pressure on the remaining natural forests in the East Usambara Mountains. Results from a spice crop agroforestry trial, established in cooperation with a local farmer, showed a clear advantage of intercropping cardamom (Elettaria cardamomum) and black pepper (Piper nigrum) with trees, especially with Grevillea robusta. The nitrogen fixing tree species Gliricidia sepium also improved the nitrogen and organic matter content of the soil over levels found in the natural forest. With improved agroforestry methods for spice production the households generated as much as13 times the net income obtained with traditional forest cultivation practices. There are thus sustainable and profitable ways to cultivate spices as cash crops in well-managed homegardens. However, the farmers need stable markets, access to credit and comprehensive extension services. The soil fertility depletion should be reversed with organic manure application and an enabling policy environment for the smallholder-farming sector. Strong farmers organisations and equal rights to resources and decision-making are needed. Organic spices have an increasing demand, and their export would be profitable for these farmers. What is, however, most needed for a change is a political will of a government that understands the importance of agricultural and forestry development for poverty reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forest management is facing new challenges under climate change. By adjusting thinning regimes, conventional forest management can be adapted to various objectives of utilization of forest resources, such as wood quality, forest bioenergy, and carbon sequestration. This thesis aims to develop and apply a simulation-optimization system as a tool for an interdisciplinary understanding of the interactions between wood science, forest ecology, and forest economics. In this thesis, the OptiFor software was developed for forest resources management. The OptiFor simulation-optimization system integrated the process-based growth model PipeQual, wood quality models, biomass production and carbon emission models, as well as energy wood and commercial logging models into a single optimization model. Osyczka s direct and random search algorithm was employed to identify optimal values for a set of decision variables. The numerical studies in this thesis broadened our current knowledge and understanding of the relationships between wood science, forest ecology, and forest economics. The results for timber production show that optimal thinning regimes depend on site quality and initial stand characteristics. Taking wood properties into account, our results show that increasing the intensity of thinning resulted in lower wood density and shorter fibers. The addition of nutrients accelerated volume growth, but lowered wood quality for Norway spruce. Integrating energy wood harvesting into conventional forest management showed that conventional forest management without energy wood harvesting was still superior in sparse stands of Scots pine. Energy wood from pre-commercial thinning turned out to be optimal for dense stands. When carbon balance is taken into account, our results show that changing carbon assessment methods leads to very different optimal thinning regimes and average carbon stocks. Raising the carbon price resulted in longer rotations and a higher mean annual increment, as well as a significantly higher average carbon stock over the rotation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The forest simulator is a computerized model for predicting forest growth and future development as well as effects of forest harvests and treatments. The forest planning system is a decision support tool, usually including a forest simulator and an optimisation model, for finding the optimal forest management actions. The information produced by forest simulators and forest planning systems is used for various analytical purposes and in support of decision making. However, the quality and reliability of this information can often be questioned. Natural variation in forest growth and estimation errors in forest inventory, among other things, cause uncertainty in predictions of forest growth and development. This uncertainty stemming from different sources has various undesirable effects. In many cases outcomes of decisions based on uncertain information are something else than desired. The objective of this thesis was to study various sources of uncertainty and their effects in forest simulators and forest planning systems. The study focused on three notable sources of uncertainty: errors in forest growth predictions, errors in forest inventory data, and stochastic fluctuation of timber assortment prices. Effects of uncertainty were studied using two types of forest growth models, individual tree-level models and stand-level models, and with various error simulation methods. New method for simulating more realistic forest inventory errors was introduced and tested. Also, three notable sources of uncertainty were combined and their joint effects on stand-level net present value estimates were simulated. According to the results, the various sources of uncertainty can have distinct effects in different forest growth simulators. The new forest inventory error simulation method proved to produce more realistic errors. The analysis on the joint effects of various sources of uncertainty provided interesting knowledge about uncertainty in forest simulators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peanut (Arachis hypogaea L.) is an economically important legume crop in irrigated production areas of northern Australia. Although the potential pod yield of the crop in these areas is about 8 t ha(-1), most growers generally obtain around 5 t ha(-1), partly due to poor irrigation management. Better information and tools that are easy to use, accurate, and cost-effective are therefore needed to help local peanut growers improve irrigation management. This paper introduces a new web-based decision support system called AQUAMAN that was developed to assist Australian peanut growers schedule irrigations. It simulates the timing and depth of future irrigations by combining procedures from the food and agriculture organization (FAO) guidelines for irrigation scheduling (FAO-56) with those of the agricultural production systems simulator (APSIM) modeling framework. Here, we present a description of AQUAMAN and results of a series of activities (i.e., extension activities, case studies, and a survey) that were conducted to assess its level of acceptance among Australian peanut growers, obtain feedback for future improvements, and evaluate its performance. Application of the tool for scheduling irrigations of commercial peanut farms since its release in 2004-2005 has shown good acceptance by local peanuts growers and potential for significantly improving yield. Limited comparison with the farmer practice of matching the pan evaporation demand during rain-free periods in 2006-2007 and 2008-2009 suggested that AQUAMAN enabled irrigation water savings of up to 50% and the realization of enhanced water and irrigation use efficiencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The decentralized power is characterised by generation of power nearer to the demand centers, focusing mainly on meeting local energy needs. A decentralized power system can function either in the presence of grid, where it can feed the surplus power generated to the grid, or as an independent/stand-alone isolated system exclusively meeting the local demands of remote locations. Further, decentralized power is also classified on the basis of type of energy resources used-non-renewable and renewable. These classifications along with a plethora of technological alternatives have made the whole prioritization process of decentralized power quite complicated for decision making. There is abundant literature, which has discussed various approaches that have been used to support decision making under such complex situations. We envisage that summarizing such literature and coming out with a review paper would greatly help the policy/decision makers and researchers in arriving at effective solutions. With such a felt need 102 articles were reviewed and features of several technological alternatives available for decentralized power, the studies on modeling and analysis of economic, environmental and technological asibilities of both grid-connected (GC) and stand-alone (SA) systems as decentralized power options are presented. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concepts of agricultural sustainability and possible roles of simulation modelling for characterising sustainability were explored by conducting, and reflecting on, a sustainability assessment of rain-fed wheat-based systems in the Middle East and North Africa region. We designed a goal-oriented, model-based framework using the cropping systems model Agricultural Production Systems sIMulator (APSIM). For the assessment, valid (rather than true or false) sustainability goals and indicators were identified for the target system. System-specific vagueness was depicted in sustainability polygons-a system property derived from highly quantitative data-and denoted using descriptive quantifiers. Diagnostic evaluations of alternative tillage practices demonstrated the utility of the framework to quantify key bio-physical and chemical constraints to sustainability. Here, we argue that sustainability is a vague, emergent system property of often wicked complexity that arises out of more fundamental elements and processes. A 'wicked concept of sustainability' acknowledges the breadth of the human experience of sustainability, which cannot be internalised in a model. To achieve socially desirable sustainability goals, our model-based approach can inform reflective evaluation processes that connect with the needs and values of agricultural decision-makers. Hence, it can help to frame meaningful discussions, from which actions might emerge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AbstractObjectives Decision support tools (DSTs) for invasive species management have had limited success in producing convincing results and meeting users' expectations. The problems could be linked to the functional form of model which represents the dynamic relationship between the invasive species and crop yield loss in the DSTs. The objectives of this study were: a) to compile and review the models tested on field experiments and applied to DSTs; and b) to do an empirical evaluation of some popular models and alternatives. Design and methods This study surveyed the literature and documented strengths and weaknesses of the functional forms of yield loss models. Some widely used models (linear, relative yield and hyperbolic models) and two potentially useful models (the double-scaled and density-scaled models) were evaluated for a wide range of weed densities, maximum potential yield loss and maximum yield loss per weed. Results Popular functional forms include hyperbolic, sigmoid, linear, quadratic and inverse models. Many basic models were modified to account for the effect of important factors (weather, tillage and growth stage of crop at weed emergence) influencing weed–crop interaction and to improve prediction accuracy. This limited their applicability for use in DSTs as they became less generalized in nature and often were applicable to a much narrower range of conditions than would be encountered in the use of DSTs. These factors' effects could be better accounted by using other techniques. Among the model empirically assessed, the linear model is a very simple model which appears to work well at sparse weed densities, but it produces unrealistic behaviour at high densities. The relative-yield model exhibits expected behaviour at high densities and high levels of maximum yield loss per weed but probably underestimates yield loss at low to intermediate densities. The hyperbolic model demonstrated reasonable behaviour at lower weed densities, but produced biologically unreasonable behaviour at low rates of loss per weed and high yield loss at the maximum weed density. The density-scaled model is not sensitive to the yield loss at maximum weed density in terms of the number of weeds that will produce a certain proportion of that maximum yield loss. The double-scaled model appeared to produce more robust estimates of the impact of weeds under a wide range of conditions. Conclusions Previously tested functional forms exhibit problems for use in DSTs for crop yield loss modelling. Of the models evaluated, the double-scaled model exhibits desirable qualitative behaviour under most circumstances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Electronic medication administration record (eMAR) systems are promoted as a potential intervention to enhance medication safety in residential aged care facilities (RACFs). The purpose of this study was to conduct an in-practice evaluation of an eMAR being piloted in one Australian RACF before its roll out, and to provide recommendations for system improvements. Methods A multidisciplinary team conducted direct observations of workflow (n=34 hours) in the RACF site and the community pharmacy. Semi-structured interviews (n=5) with RACF staff and the community pharmacist were conducted to investigate their views of the eMAR system. Data were analysed using a grounded theory approach to identify challenges associated with the design of the eMAR system. Results The current eMAR system does not offer an end-to-end solution for medication management. Many steps, including prescribing by doctors and communication with the community pharmacist, are still performed manually using paper charts and fax machines. Five major challenges associated with the design of eMAR system were identified: limited interactivity; inadequate flexibility; problems related to information layout and semantics; the lack of relevant decision support; and system maintenance issues.We suggest recommendations to improve the design of the eMAR system and to optimize existing workflows. Discussion Immediate value can be achieved by improving the system interactivity, reducing inconsistencies in data entry design and offering dedicated organisational support to minimise connectivity issues. Longer-term benefits can be achieved by adding decision support features and establishing system interoperability requirements with stakeholder groups (e.g. community pharmacies) prior to system roll out. In-practice evaluations of technologies like eMAR system have great value in identifying design weaknesses which inhibit optimal system use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information visualization is a process of constructing a visual presentation of abstract quantitative data. The characteristics of visual perception enable humans to recognize patterns, trends and anomalies inherent in the data with little effort in a visual display. Such properties of the data are likely to be missed in a purely text-based presentation. Visualizations are therefore widely used in contemporary business decision support systems. Visual user interfaces called dashboards are tools for reporting the status of a company and its business environment to facilitate business intelligence (BI) and performance management activities. In this study, we examine the research on the principles of human visual perception and information visualization as well as the application of visualization in a business decision support system. A review of current BI software products reveals that the visualizations included in them are often quite ineffective in communicating important information. Based on the principles of visual perception and information visualization, we summarize a set of design guidelines for creating effective visual reporting interfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agricultural pests are responsible for millions of dollars in crop losses and management costs every year. In order to implement optimal site-specific treatments and reduce control costs, new methods to accurately monitor and assess pest damage need to be investigated. In this paper we explore the combination of unmanned aerial vehicles (UAV), remote sensing and machine learning techniques as a promising methodology to address this challenge. The deployment of UAVs as a sensor platform is a rapidly growing field of study for biosecurity and precision agriculture applications. In this experiment, a data collection campaign is performed over a sorghum crop severely damaged by white grubs (Coleoptera: Scarabaeidae). The larvae of these scarab beetles feed on the roots of plants, which in turn impairs root exploration of the soil profile. In the field, crop health status could be classified according to three levels: bare soil where plants were decimated, transition zones of reduced plant density and healthy canopy areas. In this study, we describe the UAV platform deployed to collect high-resolution RGB imagery as well as the image processing pipeline implemented to create an orthoimage. An unsupervised machine learning approach is formulated in order to create a meaningful partition of the image into each of the crop levels. The aim of this approach is to simplify the image analysis step by minimizing user input requirements and avoiding the manual data labelling necessary in supervised learning approaches. The implemented algorithm is based on the K-means clustering algorithm. In order to control high-frequency components present in the feature space, a neighbourhood-oriented parameter is introduced by applying Gaussian convolution kernels prior to K-means clustering. The results show the algorithm delivers consistent decision boundaries that classify the field into three clusters, one for each crop health level as shown in Figure 1. The methodology presented in this paper represents a venue for further esearch towards automated crop damage assessments and biosecurity surveillance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimal bang-coast maintenance policies for a machine, subject to failure, are considered. The approach utilizes a semi-Markov model for the system. A simplified model for modifying the probability of machine failure with maintenance is employed. A numerical example is presented to illustrate the procedure and results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of UAVs for remote sensing tasks; e.g. agriculture, search and rescue is increasing. The ability for UAVs to autonomously find a target and perform on-board decision making, such as descending to a new altitude or landing next to a target is a desired capability. Computer-vision functionality allows the Unmanned Aerial Vehicle (UAV) to follow a designated flight plan, detect an object of interest, and change its planned path. In this paper we describe a low cost and an open source system where all image processing is achieved on-board the UAV using a Raspberry Pi 2 microprocessor interfaced with a camera. The Raspberry Pi and the autopilot are physically connected through serial and communicate via MAVProxy. The Raspberry Pi continuously monitors the flight path in real time through USB camera module. The algorithm checks whether the target is captured or not. If the target is detected, the position of the object in frame is represented in Cartesian coordinates and converted into estimate GPS coordinates. In parallel, the autopilot receives the target location approximate GPS and makes a decision to guide the UAV to a new location. This system also has potential uses in the field of Precision Agriculture, plant pest detection and disease outbreaks which cause detrimental financial damage to crop yields if not detected early on. Results show the algorithm is accurate to detect 99% of object of interest and the UAV is capable of navigation and doing on-board decision making.