964 resultados para Data Migration Processes Modeling


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This book is one out of 8 IAEG XII Congress volumes, and deals with Landslide processes, including: field data and monitoring techniques, prediction and forecasting of landslide occurrence, regional landslide inventories and dating studies, modeling of slope instabilities and secondary hazards (e.g. impulse waves and landslide-induced tsunamis, landslide dam failures and breaching), hazard and risk assessment, earthquake and rainfall induced landslides, instabilities of volcanic edifices, remedial works and mitigation measures, development of innovative stabilization techniques and applicability to specific engineering geological conditions, use of geophysical techniques for landslide characterization and investigation of triggering mechanisms. Focuses is given to innovative techniques, well documented case studies in different environments, critical components of engineering geological and geotechnical investigations, hydrological and hydrogeological investigations, remote sensing and geophysical techniques, modeling of triggering, collapse, runout and landslide reactivation, geotechnical design and construction procedures in landslide zones, interaction of landslides with structures and infrastructures and possibility of domino effects. The Engineering Geology for Society and Territory volumes of the IAEG XII Congress held in Torino from September 15-19, 2014, analyze the dynamic role of engineering geology in our changing world and build on the four main themes of the congress: environment, processes, issues, and approaches.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The time interval between successive migrations of biological species causes a delay time in the reaction-diffusion equations describing their space-time dynamics. This lowers the predicted speed of the waves of advance, as compared to classical models. It has been shown that this delay-time effect improves the modeling of human range expansions. Here, we demonstrate that it can also be important for other species. We present two new examples where the predictions of the time-delayed and the classical (Fisher) approaches are compared to experimental data. No free or adjustable parameters are used. We show that the importance of the delay effect depends on the dimensionless product of the initial growth rate and the delay time. We argue that the delay effect should be taken into account in the modeling of range expansions for biological species

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The caffeine solubility in supercritical CO2 was studied by assessing the effects of pressure and temperature on the extraction of green coffee oil (GCO). The Peng-Robinson¹ equation of state was used to correlate the solubility of caffeine with a thermodynamic model and two mixing rules were evaluated: the classical mixing rule of van der Waals with two adjustable parameters (PR-VDW) and a density dependent one, proposed by Mohamed and Holder² with two (PR-MH, two parameters adjusted to the attractive term) and three (PR-MH3 two parameters adjusted to the attractive and one to the repulsive term) adjustable parameters. The best results were obtained with the mixing rule of Mohamed and Holder² with three parameters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis the main objective is to examine and model configuration system and related processes. When and where configuration information is created in product development process and how it is utilized in order-delivery process? These two processes are the essential part of the whole configuration system from the information point of view. Empirical part of the work was done as a constructive research inside a company that follows a mass customization approach. Data models and documentation are created for different development stages of the configuration system. A base data model already existed for new structures and relations between these structures. This model was used as the basis for the later data modeling work. Data models include different data structures, their key objects and attributes, and relations between. Representation of configuration rules for the to-be configuration system was defined as one of the key focus point. Further, it is examined how the customer needs and requirements information can be integrated into the product development process. Requirements hierarchy and classification system is presented. It is shown how individual requirement specifications can be connected for physical design structure via features by developing the existing base data model further.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study was carried to evaluate the efficiency of the Bitterlich method in growth and yield modeling of the even-aged Eucalyptus stands. 25 plots were setup in Eucalyptus grandis cropped under a high bole system in the Central Western Region of Minas Gerais, Brazil. The sampling points were setup in the center of each plot. The data of four annual mesurements were colleted and used to adjust the three model types using the age, the site index and the basal area as independent variables. The growths models were fitted for volume and mass of trees. The efficiency of the Bitterlich method was confirmed for generating the data for growth and yield modeling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work evaluated eight hypsometric models to represent tree height-diameter relationship, using data obtained from the scaling of 118 trees and 25 inventory plots. Residue graphic analysis and percent deviation mean criteria, qui-square test precision, residual standard error between real and estimated heights and the graybill f test were adopted. The identity of the hypsometric models was also verified by applying the F(Ho) test on the plot data grouped to the scaling data. It was concluded that better accuracy can be obtained by using the model prodan, with h and d1,3 data measured in 10 trees by plots grouped into these scaling data measurements of even-aged forest stands.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The demand for more efficient manufacturing processes has been increasing in the last few years. The cold forging process is presented as a possible solution, because it allows the production of parts with a good surface finish and with good mechanical properties. Nevertheless, the cold forming sequence design is very empirical and it is based on the designer experience. The computational modeling of each forming process stage by the finite element method can make the sequence design faster and more efficient, decreasing the use of conventional "trial and error" methods. In this study, the application of a commercial general finite element software - ANSYS - has been applied to model a forming operation. Models have been developed to simulate the ring compression test and to simulate a basic forming operation (upsetting) that is applied in most of the cold forging parts sequences. The simulated upsetting operation is one stage of the automotive starter parts manufacturing process. Experiments have been done to obtain the stress-strain material curve, the material flow during the simulated stage, and the required forming force. These experiments provided results used as numerical model input data and as validation of model results. The comparison between experiments and numerical results confirms the developed methodology potential on die filling prediction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Med prediktion avses att man skattar det framtida värdet på en observerbar storhet. Kännetecknande för det bayesianska paradigmet är att osäkerhet gällande okända storheter uttrycks i form av sannolikheter. En bayesiansk prediktiv modell är således en sannolikhetsfördelning över de möjliga värden som en observerbar, men ännu inte observerad storhet kan anta. I de artiklar som ingår i avhandlingen utvecklas metoder, vilka bl.a. tillämpas i analys av kromatografiska data i brottsutredningar. Med undantag för den första artikeln, bygger samtliga metoder på bayesiansk prediktiv modellering. I artiklarna betraktas i huvudsak tre olika typer av problem relaterade till kromatografiska data: kvantifiering, parvis matchning och klustring. I den första artikeln utvecklas en icke-parametrisk modell för mätfel av kromatografiska analyser av alkoholhalt i blodet. I den andra artikeln utvecklas en prediktiv inferensmetod för jämförelse av två stickprov. Metoden tillämpas i den tredje artik eln för jämförelse av oljeprover i syfte att kunna identifiera den förorenande källan i samband med oljeutsläpp. I den fjärde artikeln härleds en prediktiv modell för klustring av data av blandad diskret och kontinuerlig typ, vilken bl.a. tillämpas i klassificering av amfetaminprover med avseende på produktionsomgångar.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The theoretical research of the study focused to business process management and business process modeling, the goal was to found a new business process modeling method for electrical accessories manufacturing enterprise. The focus was to find few options for business process modeling methods where company could have chosen the best one for its needs The study was carried out as a qualitative research with an action study and a case study as the most important ways collect data. In the empirical part of the study examples of company’s processes modeled with the new modeling method and process modeling process are presented. The new way of modeling processes improves especially visual presentation of the processes and improves the understanding how employees should work in the organizational interfaces of the process and in the interfaces between different processes. The results of the study is a new unified way to model company’s processes, which makes it easier to understand and create the process models. This improved readability makes it possible to reduce the costs that were created from the unclear old process models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acid sulfate (a.s.) soils constitute a major environmental issue. Severe ecological damage results from the considerable amounts of acidity and metals leached by these soils in the recipient watercourses. As even small hot spots may affect large areas of coastal waters, mapping represents a fundamental step in the management and mitigation of a.s. soil environmental risks (i.e. to target strategic areas). Traditional mapping in the field is time-consuming and therefore expensive. Additional more cost-effective techniques have, thus, to be developed in order to narrow down and define in detail the areas of interest. The primary aim of this thesis was to assess different spatial modeling techniques for a.s. soil mapping, and the characterization of soil properties relevant for a.s. soil environmental risk management, using all available data: soil and water samples, as well as datalayers (e.g. geological and geophysical). Different spatial modeling techniques were applied at catchment or regional scale. Two artificial neural networks were assessed on the Sirppujoki River catchment (c. 440 km2) located in southwestern Finland, while fuzzy logic was assessed on several areas along the Finnish coast. Quaternary geology, aerogeophysics and slope data (derived from a digital elevation model) were utilized as evidential datalayers. The methods also required the use of point datasets (i.e. soil profiles corresponding to known a.s. or non-a.s. soil occurrences) for training and/or validation within the modeling processes. Applying these methods, various maps were generated: probability maps for a.s. soil occurrence, as well as predictive maps for different soil properties (sulfur content, organic matter content and critical sulfide depth). The two assessed artificial neural networks (ANNs) demonstrated good classification abilities for a.s. soil probability mapping at catchment scale. Slightly better results were achieved using a Radial Basis Function (RBF) -based ANN than a Radial Basis Functional Link Net (RBFLN) method, narrowing down more accurately the most probable areas for a.s. soil occurrence and defining more properly the least probable areas. The RBF-based ANN also demonstrated promising results for the characterization of different soil properties in the most probable a.s. soil areas at catchment scale. Since a.s. soil areas constitute highly productive lands for agricultural purpose, the combination of a probability map with more specific soil property predictive maps offers a valuable toolset to more precisely target strategic areas for subsequent environmental risk management. Notably, the use of laser scanning (i.e. Light Detection And Ranging, LiDAR) data enabled a more precise definition of a.s. soil probability areas, as well as the soil property modeling classes for sulfur content and the critical sulfide depth. Given suitable training/validation points, ANNs can be trained to yield a more precise modeling of the occurrence of a.s. soils and their properties. By contrast, fuzzy logic represents a simple, fast and objective alternative to carry out preliminary surveys, at catchment or regional scale, in areas offering a limited amount of data. This method enables delimiting and prioritizing the most probable areas for a.s soil occurrence, which can be particularly useful in the field. Being easily transferable from area to area, fuzzy logic modeling can be carried out at regional scale. Mapping at this scale would be extremely time-consuming through manual assessment. The use of spatial modeling techniques enables the creation of valid and comparable maps, which represents an important development within the a.s. soil mapping process. The a.s. soil mapping was also assessed using water chemistry data for 24 different catchments along the Finnish coast (in all, covering c. 21,300 km2) which were mapped with different methods (i.e. conventional mapping, fuzzy logic and an artificial neural network). Two a.s. soil related indicators measured in the river water (sulfate content and sulfate/chloride ratio) were compared to the extent of the most probable areas for a.s. soils in the surveyed catchments. High sulfate contents and sulfate/chloride ratios measured in most of the rivers demonstrated the presence of a.s. soils in the corresponding catchments. The calculated extent of the most probable a.s. soil areas is supported by independent data on water chemistry, suggesting that the a.s. soil probability maps created with different methods are reliable and comparable.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Serine-proteases are involved in vital processes in virtually all species. They are important targets for researchers studying the relationships between protein structure and activity, for the rational design of new pharmaceuticals. Trypsin was used as a model to assess a possible differential contribution of hydration water to the binding of two synthetic inhibitors. Thermodynamic parameters for the association of bovine ß-trypsin (homogeneous material, observed 23,294.4 ± 0.2 Da, theoretical 23,292.5 Da) with the inhibitors benzamidine and berenil at pH 8.0, 25ºC and with 25 mM CaCl2, were determined using isothermal titration calorimetry and the osmotic stress method. The association constant for berenil was about 12 times higher compared to the one for benzamidine (binding constants are K = 596,599 ± 25,057 and 49,513 ± 2,732 M-1, respectively; the number of binding sites is the same for both ligands, N = 0.99 ± 0.05). Apparently the driving force responsible for this large difference of affinity is not due to hydrophobic interactions because the variation in heat capacity (DCp), a characteristic signature of these interactions, was similar in both systems tested (-464.7 ± 23.9 and -477.1 ± 86.8 J K-1 mol-1 for berenil and benzamidine, respectively). The results also indicated that the enzyme has a net gain of about 21 water molecules regardless of the inhibitor tested. It was shown that the difference in affinity could be due to a larger number of interactions between berenil and the enzyme based on computational modeling. The data support the view that pharmaceuticals derived from benzamidine that enable hydrogen bond formation outside the catalytic binding pocket of ß-trypsin may result in more effective inhibitors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Poultry carcasses have to be chilled to reduce the central breast temperatures from approximately 40 to 4 °C, which is crucial to ensure safe products. This work investigated the cooling of poultry carcasses by water immersion. Poultry carcasses were taken directly from an industrial processing plant and cooled in a pilot chiller, which was built to investigate the influence of the method and the water stirring intensity on the carcasses cooling. A simplified empiric mathematical model was used to represent the experimental results. These results indicated clearly that the understanding and quantification of heat transfer between the carcass and the cooling water is crucial to improve processes and equipment. The proposed mathematical model is a useful tool to represent the dynamics of carcasses cooling, and it can be used to compare different chiller operational conditions in industrial plants. Therefore, this study reports data and a simple mathematical tool to handle an industrial problem with little information available in the literature.