916 resultados para DNA-REPAIR


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Proliferating cell nuclear antigen (PCNA), a processivity factor for DNA polymerases δ and ɛ, is involved in DNA replication as well as in diverse DNA repair pathways. In quiescent cells, UV light-induced bulky DNA damage triggers the transition of PCNA from a soluble to an insoluble chromatin-bound form, which is intimately associated with the repair synthesis by polymerases δ and ɛ. In this study, we investigated the efficiency of PCNA complex formation in response to ionizing radiation-induced DNA strand breaks in normal and radiation-sensitive Ataxia telangiectasia (AT) cells by immunofluorescence and western blot techniques. Exposure of normal cells to γ-rays rapidly triggered the formation of PCNA foci in a dose-dependent manner in the nuclei and the PCNA foci (40–45%) co-localized with sites of repair synthesis detected by bromodeoxyuridine labeling. The chromatin-bound PCNA gradually declined with increasing post-irradiation times and almost reached the level of unirradiated cells by 6 h. The PCNA foci formed after γ-irradiation was resistant to high salt extraction and the chromatin association of PCNA was lost after DNase I digestion. Interestingly, two radiosensitive primary fibroblast cell lines, derived from AT patients harboring homozygous mutations in the ATM gene, displayed an efficient PCNA redistribution after γ-irradiation. We also analyzed the PCNA complex induced by a radiomimetic agent, Bleomycin (BLM), which produces predominantly single- and double-strand DNA breaks. The efficiency and the time course of PCNA complex induced by BLM were identical in both normal and AT cells. Our study demonstrates for the first time that the ATM gene product is not required for PCNA complex assembly in response to DNA strand breaks. Additionally, we observed an increased interaction of PCNA with the Ku70 and Ku80 heterodimer after DNA damage, suggestive of a role for PCNA in the non-homologous end-joining repair pathway of DNA strand breaks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The intracellular pathogen Trypanosoma cruzi is the etiological agent of Chagas’ disease. We have isolated a full-length cDNA encoding uracil-DNA glycosylase (UDGase), a key enzyme involved in DNA repair, from this organism. The deduced protein sequence is highly conserved at the C-terminus of the molecule and shares key residues involved in binding or catalysis with most of the UDGases described so far, while the N-terminal part is highly variable. The gene is single copy and is located on a chromosome of ∼1.9 Mb. A His-tagged recombinant protein was overexpressed, purified and used to raise polyclonal antibodies. Western blot analysis revealed the existence of a single UDGase species in parasite extracts. Using a specific ethidium bromide fluorescence assay, recombinant T.cruzi UDGase was shown to specifically excise uracil from DNA. The addition of both Leishmania major AP endonuclease and exonuclease III, the major AP endonuclease from Escherichia coli, produces stimulation of UDGase activity. This activation is specific for AP endonuclease and suggests functional communication between the two enzymes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The quality of germ cell DNA is critical for the fate of the offspring, yet there is limited knowledge of the DNA repair capabilities of such cells. One of the main DNA repair pathways is base excision repair (BER) which is initiated by DNA glycosylases that excise damaged bases, followed by incision of the generated abasic (AP) sites. We have studied human and rat methylpurine-DNA glycosylase (MPG), uracil-DNA glycosylase (UNG), and the major AP endonuclease (HAP1/APEX) in male germ cells. Enzymatic activities and western analyses indicate that these enzymes are present in human and rat male germ cells in amounts that are at least as high as in somatic cells. Minor differences were observed between different cellular stages of rat spermatogenesis and spermiogenesis. Repair of methylated DNA was also studied at the cellular level using the Comet assay. The repair was highly efficient in both human and rat male germ cells, in primary spermatocytes as well as round spermatids, compared to rat mononuclear blood cells or hepatocytes. This efficient BER removes frequently occurring DNA lesions that arise spontaneously or via environmental agents, thereby minimising the number of potential mutations transferred to the next generation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The tumor suppressor Brca1 plays an important role in protecting mammalian cells against genomic instability, but little is known about its modes of action. In this work we demonstrate that recombinant human Brca1 protein binds strongly to DNA, an activity conferred by a domain in the center of the Brca1 polypeptide. As a result of this binding, Brca1 inhibits the nucleolytic activities of the Mre11/Rad50/Nbs1 complex, an enzyme implicated in numerous aspects of double-strand break repair. Brca1 displays a preference for branched DNA structures and forms protein–DNA complexes cooperatively between multiple DNA strands, but without DNA sequence specificity. This fundamental property of Brca1 may be an important part of its role in DNA repair and transcription.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Modification of damaged replication forks is emerging as a crucial factor for efficient chromosomal duplication and the avoidance of genetic instability. The RecG helicase of Escherichia coli, which is involved in recombination and DNA repair, has been postulated to act on stalled replication forks to promote replication restart via the formation of a four-stranded (Holliday) junction. Here we show that RecG can actively unwind the leading and lagging strand arms of model replication fork structures in vitro. Unwinding is achieved in each case by simultaneous interaction with and translocation along both the leading and lagging strand templates at a fork. Disruption of either of these interactions dramatically inhibits unwinding of the opposing duplex arm. Thus, RecG translocates simultaneously along two DNA strands, one with 5′-3′ and the other with 3′-5′ polarity. The unwinding of both nascent strands at a damaged fork, and their subsequent annealing to form a Holliday junction, may explain the ability of RecG to promote replication restart. Moreover, the preferential binding of partial forks lacking a leading strand suggests that RecG may have the ability to target stalled replication intermediates in vivo in which lagging strand synthesis has continued beyond the leading strand.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In vertebrates, the RAD51 protein is required for genetic recombination, DNA repair, and cellular proliferation. Five paralogs of RAD51, known as RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3, have been identified and also shown to be required for recombination and genome stability. At the present time, however, very little is known about their biochemical properties or precise biological functions. As a first step toward understanding the roles of the RAD51 paralogs in recombination, the human RAD51C and XRCC3 proteins were overexpressed and purified from baculovirus-infected insect cells. The two proteins copurify as a complex, a property that reflects their endogenous association observed in HeLa cells. Purified RAD51C–XRCC3 complex binds single-stranded, but not duplex DNA, to form protein–DNA networks that have been visualized by electron microscopy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human hepatitis B virus genome encodes a protein, termed HBx, that is widely recognized as a transcriptional transactivator. While HBx does not directly bind cis-acting transcriptional control elements, it has been shown to associate with cellular proteins that bind DNA. Because HBx transactivated a large number of viral/cellular transcriptional control elements, we looked for its targets within the components of the basal transcriptional machinery. This search led to the identification of its interactions with TFIIH. Here, we show that HBx interacts with yeast and mammalian TFIIH complexes both in vitro and in vivo. These interactions between HBx and the components of TFIIH are supported by several lines of evidence including results from immunoprocedures and direct methods of measuring interactions. We have identified ERCC3 and ERCC2 DNA helicase subunits of holoenzyme TFIIH as targets of HBx interactions. Furthermore, the DNA helicase activity of purified TFIIH from rat liver and, individually, the ERCC2 component of TFIIH is stimulated in the presence of HBx. These observations suggest a role for HBx in transcription and DNA repair.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One gene locus on chromosome I in Saccharomyces cerevisiae encodes a protein (YAB5_YEAST; accession no. P31378) with local sequence similarity to the DNA repair glycosylase endonuclease III from Escherichia coli. We have analyzed the function of this gene, now assigned NTG1 (endonuclease three-like glycosylase 1), by cloning, mutant analysis, and gene expression in E. coli. Targeted gene disruption of NTG1 produces a mutant that is sensitive to H2O2 and menadione, indicating that NTG1 is required for repair of oxidative DNA damage in vivo. Northern blot analysis and expression studies of a NTG1-lacZ gene fusion showed that NTG1 is induced by cell exposure to different DNA damaging agents, particularly menadione, and hence belongs to the DNA damage-inducible regulon in S. cerevisiae. When expressed in E. coli, the NTG1 gene product cleaves plasmid DNA damaged by osmium tetroxide, thus, indicating specificity for thymine glycols in DNA similarly as is the case for EndoIII. However, NTG1 also releases formamidopyrimidines from DNA with high efficiency and, hence, represents a glycosylase with a novel range of substrate recognition. Sequences similar to NTG1 from other eukaryotes, including Caenorhabditis elegans, Schizosaccharomyces pombe, and mammals, have recently been entered in the GenBank suggesting the universal presence of NTG1-like genes in higher organisms. S. cerevisiae NTG1 does not have the [4Fe-4S] cluster DNA binding domain characteristic of the other members of this family.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The method of Matsumoto and Ohta [Matsumoto, K. & Ohta, T. (1992) Chromosoma 102, 60-65; Matsumoto, K. & Ohta, T. (1995) Mutat. Res. 326, 93-98] to induce large numbers of endoreduplicated Chinese hamster ovary cells has now been coupled with the fluorescence-plus-Giemsa method of Perry and Wolff [Perry, P. & Wolff, S. (1974) Nature (London) 251, 156-158] to produce harlequin endoreduplicated chromosomes that after the third round of DNA replication are composed of a chromosome with a light chromatid and a dark chromatid in close apposition to its sister chromosome containing two light chromatids. Unless the pattern is disrupted by sister chromatid exchange (SCE), the dark chromatid is always in the center, so that the order of the chromatids is light-dark light-light. The advent of this method, which permits the observation of SCEs in endoreduplicated cells, makes it possible to determine with great ease in which cell cycle an SCE occurred. This now allows us to approach several vexing questions about the induction of SCEs (genetic damage and its repair) after exposure to various types of mutagenic carcinogens. The present experiments have allowed us to observe how many cell cycles various types of lesions that are induced in DNA by a crosslinking agent, an alkylating agent, or ionizing radiation, and that are responsible for the induction of SCEs, persist before being repaired and thus lose their ability to inflict genetic damage. Other experiments with various types of mutagenic carcinogens and various types of cell lines that have defects in different DNA repair processes, such as mismatch repair, excision repair, crosslink repair, and DNA-strand-break repair, can now be carried out to determine the role of these types of repair in removing specific types of lesions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

DNA repair alkyltransferases protect organisms against the cytotoxic, mutagenic, and carcinogenic effects of alkylating agents by transferring alkyl adducts from DNA to an active cysteine on the protein, thereby restoring the native DNA structure. We used random sequence substitutions to gain structure-function information about the human O6-methylguanine-DNA methyltransferase (EC 2.1.1.63), as well as to create active mutants. Twelve codons surrounding but not including the active cysteine were replaced by a random nucleotide sequence, and the resulting random library was selected for the ability to provide alkyltransferase-deficient Escherichia coli with resistance to the methylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Few amino acid changes were tolerated in this evolutionarily conserved region of the protein. One mutation, a valine to phenylalanine change at codon 139 (V139F), was found in 70% of the selected mutants; in fact, this mutant was selected much more frequently than the wild type. V139F provided alkyltransferase-deficient bacteria with greater protection than the wild-type protein against both the cytotoxic and mutagenic effects of N-methyl-N'-nitro-N-nitrosoguanidine, increasing the D37 over 4-fold and reducing the mutagenesis rate 2.7-5.5-fold. This mutant human alkyltransferase, or others similarly created and selected, could be used to protect bone marrow cells from the cytotoxic side effects of alkylation-based chemotherapeutic regimens.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Induction of cytochrome P4501A1 (CYP1A1) in the hepatoma Hepa1c1c7 cell line results in an elevation in the excretion rate of 8-oxoguanine (oxo8Gua), a biomarker of oxidative DNA damage and the major repair product of 8-oxo-2'-deoxyguanosine (oxo8dG) residues in DNA. Treatment of this cell line with 2,3,7,8-tetrachloro-p-dibenzodioxin (TCDD), a nonmetabolized environmental contaminant, and indolo(3,2-b)carbazole (ICZ), a metabolite of a natural pesticide found in cruciferous vegetables, is shown to both induce CYP1A1 activity and elevate the excretion rate of oxo8Gua; 7,8-benzoflavone (7,8-BF or alpha-naphthoflavone), an inhibitor of CYP1A1 activity and an antagonist of the aryl hydrocarbon (Ah) receptor, reduced the excretion rate of oxo8Gua. The essential role of Ah-receptor, which mediates the induction of CYP1A1, is shown by the inability of TCDD to induce CYP1A1 and to increase excretion of oxo8Gua in Ah receptor-defective c4 mutant cells. While there was a significant 7.0-fold increase over 2 days in the excretion rate of oxo8Gua into the growth medium of TCDD-treated Hepa1c1c7 cells compared to control, no significant increase was detected in the steady-state level of oxo8dG in the DNA presumably due to efficient DNA repair. Thus, the induction of CYP1A1 appears to lead to a leak of oxygen radicals and consequent oxidative DNA damage that could lead to mutation and cancer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The free radicals nitric oxide and superoxide anion react to form peroxynitrite (ONOO-), a highly toxic oxidant species. In vivo formation of ONOO- has been demonstrated in shock and inflammation. Herein we provide evidence that cytotoxicity in cells exposed to ONOO- is mediated by DNA strand breakage and the subsequent activation of the DNA repair enzyme poly(ADP ribose) synthetase (PARS). Exposure to ONOO- (100 microM to 1 mM) inhibited mitochondrial respiration in cultured J774 macrophages and in rat aortic smooth muscle cells. The loss of cellular respiration was rapid, peaking 1-3 h after ONOO- exposure, and reversible, with recovery after a period of 6-24 h. The inhibition of mitochondrial respiration was paralleled by a dose-dependent increase in DNA strand breakage, reaching its maximum at 20-30 min after exposure to ONOO-. We observed a dose-dependent increase in the activity of PARS in cells exposed to ONOO-. Inhibitors of PARS such as 3-aminobenzamide (1 mM) prevented the inhibition of cellular respiration in cells exposed to ONOO-. Activation of PARS by ONOO--mediated DNA strand breakage resulted in a significant decrease in intracellular energy stores, as reflected by a decline of intracellular NAD+ and ATP content. 3-Aminobenzamide prevented the loss of NAD+ and ATP in cells exposed to ONOO-. In contrast, impairment of cellular respiration by the addition of the nitric oxide donors S-nitroso-N-acetyl-DL-penicillamine or diethyltriamine nitric oxide complex, was not associated with the development of DNA strand breaks, in concentrations up to 1 mM, and was largely refractory to PARS inhibition. Our results suggest that DNA damage and activation of PARS, an energy-consuming futile repair cycle, play a central role in ONOO--mediated cellular injury.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recombination repair protein 1 (Rrp1) includes a C-terminal region homologous to several DNA repair proteins, including Escherichia coli exonuclease III and human APE, that repair oxidative and alkylation damage to DNA. The nuclease activities of Rrp1 include apurinic/apyrimidinic endonuclease, 3'-phosphodiesterase, 3'-phosphatase, and 3'-exonuclease. As shown previously, the C-terminal nuclease region of Rrp1 is sufficient to repair oxidative- and alkylation-induced DNA damage in repair-deficient E. coli mutants. DNA strand-transfer and single-stranded DNA renaturation activities are associated with the unique N-terminal region of Rrp1, which suggests possible additional functions that include recombinational repair or homologous recombination. By using the Drosophila w/w+ mosaic eye system, which detects loss of heterozygosity as changes in eye pigmentation, somatic mutation and recombination frequencies were determined in transgenic flies overexpressing wild-type Rrp1 protein from a heat-shock-inducible transgene. A large decrease in mosaic clone frequency is observed when Rrp1 overexpression precedes treatment with gamma-rays, bleomycin, or paraquat. In contrast, Rrp1 overexpression does not alter the spot frequency after treatment with the alkylating agents methyl methanesulfonate or methyl nitrosourea. A reduction in mosaic clone frequency depends on the expression of the Rrp1 transgene and on the nature of the induced DNA damage. These data suggest a lesion-specific involvement of Rrp1 in the repair of oxidative DNA damage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although the ability of UV irradiation to induce pigmentation in vivo and in vitro is well documented, the intracellular signals that trigger this response are poorly understood. We have recently shown that increasing DNA repair after irradiation enhances UV-induced melanization. Moreover, addition of small DNA fragments, particularly thymine dinucleotides (pTpT), selected to mimic sequences excised during the repair of UV-induced DNA photoproducts, to unirradiated pigment cells in vitro or to guinea pig skin in vivo induces a pigment response indistinguishable from UV-induced tanning. Here we present further evidence that DNA damage and/or the repair of this damage increases melanization. (i) Treatment with the restriction enzyme Pvu II or the DNA-damaging chemical agents methyl methanesulfonate (MMS) or 4-nitroquinoline 1-oxide (4-NQO) produces a 4- to 10-fold increase in melanin content in Cloudman S91 murine melanoma cells and an up to 70% increase in normal human melanocytes, (ii) UV irradiation, MMS, and pTpT all upregulate the mRNA level for tyrosinase, the rate-limiting enzyme in melanin biosynthesis. (iii) Treatment with pTpT or MMS increases the response of S91 cells to melanocyte-stimulating hormone (MSH) and increases the binding of MSH to its cell surface receptor, as has been reported for UV irradiation. Together, these data suggest that UV-induced DNA damage and/or the repair of this damage is an important signal in the pigmentation response to UV irradiation. Because Pvu II acts exclusively on DNA and because MMS and 4-NQO, at the concentrations used, primarily interact with DNA, such a stimulus alone appears sufficient to induce melanogenesis. Of possible practical importance, the dinucleotide pTpT mimics most, if not all, of the effects of UV irradiation on pigmentation, tyrosinase mRNA regulation, and response to MSH without the requirement for antecedent DNA damage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Arabidopsis thaliana mutants originally isolated as hypersensitive to irradiation were screened for the ability to be transformed by Agrobacterium transferred DNA (T-DNA). One of four UV-hypersensitive mutants and one of two gamma-hypersensitive mutants tested showed a significant reduction in the frequency of stable transformants compared with radioresistant controls. In a transient assay for T-DNA transfer independent of genomic integration, both mutant lines took up and expressed T-DNA as efficiently as parental lines. These lines are therefore deficient specifically in stable T-DNA integration and thus provide direct evidence for the role of a plant function in that process. As radiation hypersensitivity suggests a deficiency in repair of DNA damage, that plant function may be one that is also involved in DNA repair, possibly, from other evidence, in repair of double-strand DNA breaks.