906 resultados para DNA methylation epigenetic AHCY methionine
Resumo:
Precise mapping of DNA methylation patterns in CpG islands has become essential for understanding diverse biological processes such as the regulation of imprinted genes, X chromosome inactivation, and tumor suppressor gene silencing in human cancer. We describe a new method, MSP (methylation-specific PCR), which can rapidly assess the methylation status of virtually any group of CpG sites within a CpG island, independent of the use of methylation-sensitive restriction enzymes. This assay entails initial modification of DNA by sodium bisulfite, converting all unmethylated, but not methylated, cytosines to uracil, and subsequent amplification with primers specific for methylated versus unmethylated DNA. MSP requires only small quantities of DNA, is sensitive to 0.1% methylated alleles of a given CpG island locus, and can be performed on DNA extracted from paraffin-embedded samples. MSP eliminates the false positive results inherent to previous PCR-based approaches which relied on differential restriction enzyme cleavage to distinguish methylated from unmethylated DNA. In this study, we demonstrate the use of MSP to identify promoter region hypermethylation changes associated with transcriptional inactivation in four important tumor suppressor genes (p16, p15, E-cadherin, and von Hippel-Lindau) in human cancer.
Resumo:
The association between increased DNA-methyltransferase (DNA-MTase) activity and tumor development suggest a fundamental role for this enzyme in the initiation and progression of cancer. A true functional role for DNA-MTase in the neoplastic process would be further substantiated if the target cells affected by the initiating carcinogen exhibit changes in enzyme activity. This hypothesis was addressed by examining DNA-MTase activity in alveolar type II (target) and Clara (nontarget) cells from A/J and C3H mice that exhibit high and low susceptibility, respectively, for lung tumor formation. Increased DNA-MTase activity was found only in the target alveolar type II cells of the susceptible A/J mouse and caused a marked increase in overall DNA methylation in these cells. Both DNA-MTase and DNA methylation changes were detected 7 days after carcinogen exposure and, thus, were early events in neoplastic evolution. Increased gene expression was also detected by RNA in situ hybridization in hypertrophic alveolar type II cells of carcinogen-treated A/J mice, indicating that elevated levels of expression may be a biomarker for premalignancy. Enzyme activity increased incrementally during lung cancer progression and coincided with increased expression of the DNA-MTase activity are strongly associated with neoplastic development and constitute a key step in carcinogenesis. The detection of premalignant lung disease through increased DNA-MTase expression and the possibility of blocking the deleterious effects of this change with specific inhibitors will offer new intervention strategies for lung cancer.
Resumo:
The CcrM adenine DNA methyltransferase, which specifically modifies GANTC sequences, is necessary for viability in Caulobacter crescentus. To our knowledge, this is the first example of an essential prokaryotic DNA methyltransferase that is not part of a DNA restriction/modification system. Homologs of CcrM are widespread in the alpha subdivision of the Proteobacteria, suggesting that methylation at GANTC sites may have important functions in other members of this diverse group as well. Temporal control of DNA methylation state has an important role in Caulobacter development, and we show that this organism utilizes an unusual mechanism for control of remethylation of newly replicated DNA. CcrM is synthesized de novo late in the cell cycle, coincident with full methylation of the chromosome, and is then subjected to proteolysis prior to cell division.
Resumo:
Parcela considerável de pacientes com distúrbios de crescimento não têm a causa de seus quadros clínicos estabelecida, incluindo aproximadamente 50% dos pacientes com diagnóstico clínico de síndrome de Silver−Russell (SRS) e 10-20% dos pacientes com síndrome de Beckwith-Wiedemann (BWS). O objetivo deste estudo foi investigar as causas genéticas e epigenéticas de distúrbios de crescimento, de etiologia desconhecida, numa contribuição para o entendimento de mecanismos que regulam o crescimento. O estudo compreendeu: (1) a investigação de microdesequilíbrios cromossômicos, por aCGH; (2) a análise do perfil de expressão alelo-específica de genes sujeitos a imprinting (IG), por pirossequenciamento (PSQ) ou sequenciamento de Sanger; (3) a investigação do padrão de metilação global em pacientes com restrição de crescimento, utilizando microarray de metilação. A casuística constituiu-se de 41 pacientes não aparentados, com distúrbios de crescimento, de etiologia desconhecida: (1) 25, com hipótese diagnóstica de SRS; (2) seis, com restrição de crescimento intrauterino e peso ao nascimento abaixo do 10º percentil, associados a outros sinais clínicos; (3) sete, com hipótese diagnóstica de BWS; e (4) três, com macrossomia pré-natal ou pós-natal, associada a outros sinais. A investigação de microdesequilíbrios cromossômicos foi realizada em 40 pacientes. Foram detectadas 58 variantes raras em 30/40 pacientes (75%): 40 foram consideradas provavelmente benignas (18 pacientes, 45%), 12, com efeito patogênico desconhecido (11 pacientes, 27,5%), duas, provavelmente patogênicas (um paciente, 2,5%) e quatro, patogênicas (três pacientes, 7,5%). Essas frequências são comparáveis àquelas descritas em estudos que investigaram CNV em grupos de pacientes com distúrbios de crescimento e outras alterações congênitas, incluindo SRS, e mostram a importância da investigação de microdesequilíbrios cromossômicos nesses pacientes. A diversidade dos microdesequilíbrios cromossômicos identificados é reflexo da heterogeneidade clínica das casuísticas. Neste estudo, muitos dos pacientes com hipótese diagnóstica de SRS e BWS apresentavam sinais clínicos atípicos, explicando a ausência neles das alterações (epi)genéticas que causam essas síndromes. A identificação de CNV características de outras síndromes reflete a sobreposição de sinais clínicos com BWS e SRS. A análise do perfil de expressão alelo-específica de IG foi realizada em um subgrupo de 18 pacientes com restrição de crescimento. Trinta IG com função em proliferação celular, crescimento fetal ou neurodesenvolvimento foram inicialmente selecionados. Após seleção de SNP transcritos com alta frequência na população, genotipagem de pacientes, genitores e indivíduos controle, determinação da expressão dos IG em sangue periférico e seu padrão de expressão (mono ou bialélico), 13 IG, expressos no sangue, tiveram a expressão alelo-específica avaliada, sete deles por PSQ e seis por sequenciamento de Sanger. Alterações no perfil de expressão de dois genes, de expressão normalmente paterna, foram detectadas em 4/18 pacientes (22%). Este estudo é o primeiro a utilizar pirossequenciamento e sequenciamento de Sanger na avaliação do perfil de expressão alelo-específica de IG, em pacientes com restrição de crescimento. Apesar de terem limitações, ambas as técnicas mostraram-se robustas e revelaram alterações de expressão alélica interessantes; entretanto, a relação dessas alterações com o quadro clínico dos pacientes permanece por esclarecer. A investigação da metilação global do DNA foi realizada em subgrupo de 21 pacientes com restrição de crescimento e em 24 indivíduos controle. Dois tipos de análise foram realizados: (1) análise diferencial de grupo e (2) análise diferencial individual. Na primeira análise, em que foi comparado o padrão de metilação do grupo de pacientes com quadro clínico sugestivo de SRS (n=16) com o do grupo controle (n=24), não houve indicação de hipo ou hipermetilação global no grupo SRS. Na segunda análise, foi comparado o padrão de metilação de cada um dos 21 pacientes com restrição de crescimento e dos 24 indivíduos controle, com o padrão de metilação do grupo controle. O número médio de CpG hipermetilados e de segmentos diferencialmente metilados (SDM) foi significativamente maior nos pacientes. Foram identificados 82 SDM hipermetilados, estando 57 associados a gene(s) (69,5%), em 16 pacientes, e 51 SDM hipometilados, 41 deles associados a gene(s) (80,4%), em 10 pacientes. A análise de ontologia genética dos 61 genes associados aos SDM hipo ou hipermetilados nos pacientes destacou genes que atuam no desenvolvimento e na morfogênese do sistema esquelético e de órgãos fetais, e na regulação da transcrição gênica e de processos metabólicos. Alterações de metilação em genes que atuam em processos de proliferação e diferenciação celulares e crescimento foram identificadas em 9/20 dos pacientes (45%), sugerindo implicação clínica. Não foi detectada alteração epigenética comum aos pacientes com diagnóstico clínico de SRS, explicável provavelmente pela heterogeneidade clínica. A investigação de metilação global, utilizando microarray, produziu novos dados que podem contribuir para a compreensão de mecanismos moleculares que influenciam o crescimento pré- e pós-natal. Na translocação aparentemente equilibrada - t(5;6)(q35.2;p22.3)dn, detectada em paciente com suspeita clínica de SRS, a interrupção de um gene, pela quebra no cromossomo 6, pode ser a causa do quadro clínico; alternativamente, a translocação pode ter impactado a regulação de genes de desenvolvimento localizados próximos aos pontos de quebra. A análise de expressão em sangue periférico mostrou que os níveis de cDNA do gene, interrompido pelo ponto de quebra da translocação, estavam reduzidos à metade. Além de sinais típicos da SRS, a paciente apresentava algumas características clínicas sugestivas de displasia cleidocraniana. Assim, a translocação t(5;6) pode ter alterado a interação de genes de desenvolvimento e seus elementos reguladores, levando à desregulação de sua expressão espaço-temporal, e resultando num fenótipo atípico, com características sobrepostas de mais de uma síndrome genética
Resumo:
La sérotonine (5-HT) joue un rôle crucial dans l'étiologie des troubles mentaux comme la dépression majeure, les troubles de comportement et les troubles anxieux. Des études ont montré que des altérations précoces du système 5-HT peuvent potentiellement influencer le développement du cerveau et le fonctionnement du système fronto-limbique, engendrant des conséquences pour la régulation émotionnelle. Il existe aussi des évidences que le stress précoce peut affecter la méthylation de l'ADN résultant d'une altération de l'expression génique. Toutefois, le lien entre la méthylation de l'ADN et la réactivité comportementale à des facteurs de stress de la vie quotidienne est inconnu. La méthylation du gène transporteur 5-HT (SLC6A4) est d'un intérêt particulier, étant donné le rôle de SLC6A4 dans le développement du cerveau, les troubles mentaux et la régulation du stress. L'objectif de cette thèse est d'étudier l'association entre (1) les niveaux périphériques de méthylation de l'ADN dans le gène SLC6A4 et les réponses neurales aux stimuli émotionnels dans les circuits fronto-limbiques du cerveau, ainsi qu’entre (2) la méthylation périphérique de SLC6A4 et la réactivité comportementale au stress de la vie quotidienne. Nous explorons également l'association entre les réponses neuronales fronto-limbique à des stimuli émotionnels et la réactivité comportementale au stress de la vie quotidienne (3). À cette fin, vingt-deux personnes (11 femmes) d’âge moyen de 34,0 ans (SD : 1,5) avec différents niveaux de méthylation au gène SLC6A4 ont été recrutés à partir de deux études longitudinales. Les participants ont subi une analyse IRMf qui comprenait une tâche de traitement émotionnel. Un questionnaire en ligne sur la réactivité au stress quotidien de la vie a été réalisé pendant 5 jours consécutifs. Des analyses corrélationnelles et de régression ont été effectuées pour examiner les associations entre les variables primaires. Les résultats préliminaires de cette étude ont montré que la méthylation de l'ADN est associée à la désactivation significative du gyrus précentral et gyrus fusiforme respectivement face à des stimuli de peur et de tristesse. Aucune association significative n'a été observée entre les niveaux de méthylation et l'activation de l'amygdale. En outre, les scores obtenus aux variables de stress de la vie quotidienne tels que la détresse chronique ont été associées à la désactivation du précuneus et du cortex cingulaire postérieur face à la tristesse. Ces résultats suggèrent l'implication potentielle des processus épigénétiques dans l'activation cérébrale spécifique et la sensibilité au stress de la vie courante.
Resumo:
Epigenetics is the study of heritable changes in gene expression that occur without changes in DNA sequence. It has a role in determining when and where a gene is expressed during development. Perhaps the most well known epigenetic mechanism is DNA methylation whereby cytosines at position 5 in CpG dinucleotides are methylated. Histone modification is another form of epigenetic control, which is quite complex and diverse. Histones and DNA make up the nucleosome which is the structural unit of chromatin which are involved in packaging DNA. Apart from the crucial role epigenetics plays in embryonic development, transcription, chromatin structure, X chromosome inactivation and genomic imprinting, its role in an increasing number of human diseases is more and more recognized. These diseases include cancer, and lung cancer in particular has been increasingly studied for the potential biological role of epigenetic changes with the promise of better and novel diagnostic and therapeutic tools.
Resumo:
Bacterial LPS triggers dramatic changes in gene expression in macrophages. We show here that LPS regulated several members of the histone deacetylase (HDAC) family at the mRNA level in murine bone marrow-derived macrophages (BMM). LPS transiently repressed, then induced a number of HDACs (Hdac-4, 5, 7) in BMM, whereas Hdac-1 mRNA was induced more rapidly. Treatment of BMM with trichostatin A (TSA), an inhibitor of HDACs, enhanced LPS-induced expression of the Cox-2, Cxcl2, and Ifit2 genes. In the case of Cox-2, this effect was also apparent at the promoter level. Overexpression of Hdac-8 in RAW264 murine macrophages blocked the ability of LPS to induce Cox-2 mRNA. Another class of LPS-inducible genes, which included Ccl2, Ccl7, and Edn1, was suppressed by TSA, an effect most likely mediated by PU.1 degradation. Hence, HDACs act as potent and selective negative regulators of proinflammatory gene expression and act to prevent excessive inflammatory responses in macrophages.
Resumo:
Despite our detailed characterization of the human genome at the level of the primary DNA sequence, we are still far from understanding the molecular events underlying phenotypic variation. Epigenetic modifications to the DNA sequence and associated chromatin are known to regulate gene expression and, as such, are a significant contributor to phenotype. Studies of inbred mice and monozygotic twins show that variation in the epigenotype can be seen even between genetically identical individuals and that this, in some cases at least, is associated with phenotypic differences. Moreover, recent evidence suggests that the epigenome can be influenced by the environment and these changes can last a lifetime. However, we also know that epigenetic states in real-time are in continual flux and, as a result, the epigenome exhibits instability both within and across generations. We still do not understand the rules governing the establishment and maintenance of the epigenotype at any particular locus. The underlying DNA sequence itself and the sequence at unlinked loci (modifier loci) are certainly involved. Recent support for the existence of transgenerational epigenetic inheritance in mammals suggests that the epigenetic state of the locus in the previous generation may also play a role. Over the next decade, many of these processes will be better understood, heralding a greater capacity for us to correlate measurable molecular marks with phenotype and providing the opportunity for improved diagnosis and presymptomatic healthcare.
Resumo:
Sex differences occur in most non-communicable diseases, including metabolic diseases, hypertension, cardiovascular disease, psychiatric and neurological disorders and cancer. In many cases, the susceptibility to these diseases begins early in development. The observed differences between the sexes may result from genetic and hormonal differences and from differences in responses to and interactions with environmental factors, including infection, diet, drugs and stress. The placenta plays a key role in fetal growth and development and, as such, affects the fetal programming underlying subsequent adult health and accounts, in part for the developmental origin of health and disease (DOHaD). There is accumulating evidence to demonstrate the sex-specific relationships between diverse environmental influences on placental functions and the risk of disease later in life. As one of the few tissues easily collectable in humans, this organ may therefore be seen as an ideal system for studying how male and female placenta sense nutritional and other stresses, such as endocrine disruptors. Sex-specific regulatory pathways controlling sexually dimorphic characteristics in the various organs and the consequences of lifelong differences in sex hormone expression largely account for such responses. However, sex-specific changes in epigenetic marks are generated early after fertilization, thus before adrenal and gonad differentiation in the absence of sex hormones and in response to environmental conditions. Given the abundance of X-linked genes involved in placentogenesis, and the early unequal gene expression by the sex chromosomes between males and females, the role of X- and Y-chromosome-linked genes, and especially those involved in the peculiar placenta-specific epigenetics processes, giving rise to the unusual placenta epigenetic landscapes deserve particular attention. However, even with recent developments in this field, we still know little about the mechanisms underlying the early sex-specific epigenetic marks resulting in sex-biased gene expression of pathways and networks. As a critical messenger between the maternal environment and the fetus, the placenta may play a key role not only in buffering environmental effects transmitted by the mother but also in expressing and modulating effects due to preconceptional exposure of both the mother and the father to stressful conditions.
Resumo:
Fibrosis of any tissue is characterized by excessive extracellular matrix accumulation that ultimately destroys tissue architecture and eventually abolishes normal organ function. Although much research has focused on the mechanisms underlying disease pathogenesis, there are still no effective antifibrotic therapies that can reverse, stop or delay the formation of scar tissue in most fibrotic organs. As fibrosis can be described as an aberrant wound healing response, a recent hypothesis suggests that the cells involved in this process gain an altered heritable phenotype that promotes excessive fibrotic tissue accumulation. This article will review the most recent observations in a newly emerging field that links epigenetic modifications to the pathogenesis of fibrosis. Specifically, the roles of DNA methylation and histone modifications in fibrotic disease will be discussed.
Resumo:
It is becoming increasingly apparent that epigenetics plays a crucial role in the cellular response to hypoxia. Such epigenetic regulation may work hand in hand with the hypoxia-induced transcription factor (HIF) family or may contribute in a more substantial way to the maintenance of a hypoxia-adapted cellular phenotype long after HIF has initiated the immediate response pathways. In this article we discuss the current research implicating epigenetic mechanisms in the cellular response to hypoxic environments. This includes; the role of epigenetics in both the stabilization and binding of HIF to its transcriptional targets, the role of histone demethylase enzymes following direct HIF transactivation, and finally, the impact of hypoxic environments on global patterns of histone modifications and DNA methylation.
Resumo:
The p16 gene competes with cyclin D for binding to CDK4/CDK6 and therefore inhibits CDK4/6 complex kinase activity, resulting in dephosphorylation of pRb and related G1 growth arrest. Inactivation of this gene has been involved in a variety of tumors by different mechanisms: homozygous/hemyzygous deletions, point mutations and methylation of a 5' CpG island into exon E1alpha of the p16 gene. Homozygous deletions have been rarely found in multiple myeloma (MM) and no point mutations have been reported. Two recent studies have reported a high prevalence of methylation in the exon E1alpha of the p16 gene, but included only a small number of cases. We have analyzed the methylation pattern of exon E1alpha of the p16 gene in 101 untreated MM and five primary plasma cell leukemias (PCL). A PCR assay, relying on the inability of some restriction enzymes to digest methylated sequences, was used to analyze the methylation status. Southern blot analysis was used to confirm these results. Forty-one of 101 MM patients (40.5%) as well as four of the five (80%) primary PCL patients had shown methylation of the exon E1alpha. Our study confirms that hypermethylation of the p16 gene is a frequent event in MM. Leukemia (2000) 14, 183-187.
Resumo:
Suite à l’exposition à des facteurs de risque incluant la malnutrition, la dyslipidémie, la sédentarité et les désordres métaboliques, les maladies cardiovasculaires (MCV) sont caractérisées par un état pro-oxydant et pro-inflammatoire, et une dérégulation de l’expression de divers facteurs responsables de l’homéostasie de l’environnement rédox et inflammatoire. L’implication d’enzymes antioxydantes telles que les superoxyde dismutases (SOD) et les glutathion peroxydases (Gpx), ainsi que la contribution de médiateurs pro-inflammatoires tels que l’angiopoietin-like 2 (Angptl2) ont été rapportées dans le cadre des MCV. Toutefois, les mécanismes moléculaires sensibles aux facteurs de risque et menant au développement des MCV sont peu connus. L’épigénétique est un mécanisme de régulation de l’expression génique sensible aux stimuli extracellulaires et pourrait donc contribuer au développement des MCV. La méthylation de l’ADN est un des mécanismes épigénétiques pouvant varier tant de manière gène-spécifique qu’à l’échelle génomique, et la conséquence de tels changements sur l’expression des gènes ciblés dépend du site de méthylation. Puisqu’il a été démontré que des variations au niveau de la méthylation de l’ADN peuvent être associées à divers contextes pathologiques incluant les MCV, le but de nos travaux était d’étudier le lien entre la méthylation de gènes antioxydants et pro-inflammatoires avec leurs répercussions fonctionnelles biologiques en présence de facteurs de risques associés aux MCV, tels que le vieillissement, la dyslipidémie et la sédentarité. Dans la première étude, nous avons observé que dans l’artère fémorale de souris vieillissantes, la méthylation au niveau du promoteur du gène Sod2, codant pour l’enzyme antioxydante superoxyde dismutase de type 2 (SOD2 ou MnSOD), diminue avec l’âge. Ceci serait associé à l’induction de l’expression de MnSOD, renforçant ainsi la défense antioxydante endogène. Le vieillissement étant associé à une accumulation de la production de radicaux libres, nous avons étudié la vasodilatation dépendante de l’endothélium qui est sensible au stress oxydant. Nous avons observé que la capacité vasodilatatrice globale a été maintenue chez les souris âgées, aux dépens d’une diminution des facteurs hyperpolarisants dérivés de l’endothélium (EDHF) et d’une contribution accentuée de la voie du monoxyde d’azote (NO). Nous avons ensuite utilisé deux approches visant à réduire les niveaux de stress oxydant in vivo, soit la supplémentation avec un antioxydant, la catéchine, et l’exposition chronique à de l’exercice physique volontaire. Ces interventions ont permis de prévenir à la fois les changements au niveau de la fonction endothéliale et de l’hypométhylation de Sod2. Cette première étude démontre donc la sensibilité de la méthylation de l’ADN à l’environnement rédox. Dans la deuxième étude, nous avons démontré une régulation de l’expression de l’enzyme antioxydante glutathion peroxydase 1 (Gpx1) en lien avec la méthylation de son gène codant, Gpx1, dans un contexte de dyslipidémie sévère. Nos résultats démontrent que dans le muscle squelettique de souris transgéniques sévèrement dyslipidémiques (LDLr-/-; hApoB+/+), Gpx1 est hyperméthylé, ce qui diminue l’expression de Gpx1 et affaiblit la défense antioxydante endogène. Chez ces souris, l’exercice physique chronique a permis d’augmenter l’expression de Gpx1 en lien avec une hypométhylation transitoire de son gène. Cette étude démontre que le stress oxydant associé à la dyslipidémie sévère altère les mécanismes de défense antioxydante, en partie via un mécanisme épigénétique. De plus, on observe également que l’exercice physique permet de renverser ces effets et peut induire des changements épigénétiques, mais de manière transitoire. La troisième étude avait pour but d’étudier la régulation de l’Angptl2, une protéine circulante pro-inflammatoire, dans le contexte des MCV. Nous avons observé que chez des patients coronariens, la concentration circulante d’Angptl2 est significativement plus élevée que chez des sujets sains et ce, en lien avec une hypométhylation de son gène, ANGPTL2, mesurée dans les leucocytes circulants. Nous sommes les premiers à démontrer qu’en réponse à l’environnement pro-inflammatoire associé à une MCV, l’expression de l’Angptl2 est stimulée par un mécanisme épigénétique. Nos études ont permis d’identifier des nouvelles régions régulatrices différentiellement méthylées situées dans les gènes impliqués dans la défense antioxydante, soit Sod2 en lien avec le vieillissement et Gpx1 en lien avec la dyslipidémie et l’exercice. Nous avons également démontré un mécanisme de régulation de l’Angptl2 dépendant de la méthylation d’ANGPTL2 et ce, pour la première fois dans un contexte de MCV. Ces observations illustrent la nature dynamique de la régulation épigénétique par la méthylation de l’ADN en réponse aux stimuli environnementaux. Nos études contribuent ainsi à la compréhension et l’identification de mécanismes moléculaires impliqués dans le développement du phénotype pathologique suite à l’exposition aux facteurs de risque, ce qui ouvre la voie à de nouvelles approches thérapeutiques.