997 resultados para DNA DELIVERY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA-hsp65, a DNA vaccine encoding the 65-kDa heat-shock protein of Mycobacterium leprae (Hsp65) is capable of inducing the reduction of established tumors in mouse models. We conducted a phase I clinical trial of DNA-hsp65 in patients with advanced head and neck carcinoma. In this article, we report on the vaccine`s potential to induce immune responses to Hsp65 and to its human homologue, Hsp60, in these patients. Twenty-one patients with unresectable squamous cell carcinoma of the head and neck received three doses of 150, 400 or 600 mu g naked DNA-hsp65 plasmid by ultrasound-guided intratumoral injection. Vaccination did not increase levels of circulating anti-hsp65 IgG or IgM antibody, or lead to detectable Hsp65-specific cell proliferation or interferon-gamma (IFN-gamma) production by blood mononuclear cells. Frequency of antigen-induced IL-10-producing cells increased after vaccination in 4 of 13 patients analyzed. Five patients showed disease stability or regression following immunization; however, we were unable to detect significant differences between these patients and those with disease progression using these parameters. There was also no increase in antibody or IFN-gamma responses to human Hsp60 in these patients. Our results suggest that although DNA-hsp65 was able to induce some degree of immunostimulation with no evidence of pathological autoimmunity, we were unable to differentiate between patients with different clinical outcomes based on the parameters measured. Future studies should focus on characterizing more reliable correlations between immune response parameters and clinical outcome that may be used as predictors of vaccine success in immunosuppressed individuals. Cancer Gene Therapy (2009) 16, 598-608; doi:10.1038/cgt.2009.9; published online 6 February 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Problem We evaluated associations between a length polymorphism in intron 2 of the gene coding for IL-1ra (gene symbol IL1RN) and pregnancy outcome in a population with a high rate of preterm birth. Method of study Subjects were pregnant women in Maceio, Brazil and their newborns. DNA was tested for IL1RN genotypes and alleles by gene amplification using primer pairs that spanned the polymorphic region. Every subject completed a detailed questionnaire. Results The frequency of allele 2 (IL1RN*2) carriage was elevated in mothers with a spontaneous preterm birth (SPTB) in the current pregnancy (P = 0.02) and also with a prior preterm delivery (P = .01). Both SPTB with intact membranes (P = 0.01) and SPTB preceded by pre-term pre-mature rupture of membranes (P = .03) were associated with IL1RN*2 carriage. A previous fetal demise was more than twice as prevalent in mothers positive for two copies of IL1RN*2. Conclusion Maternal carriage of IL1RN*2 increases susceptibility to inflammation-triggered spontaneous pre-term birth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering that mycobacterial heat-shock protein 65 (hsp65) gene transfer can elicit a profound antitumoral effect, this study aimed to establish the safety, maximum-tolerated dose (MTD) and preliminary efficacy of DNA-hsp65 immunotherapy in patients with advanced head and neck squamous cell carcinoma (HNSCC). For this purpose, 21 patients with unresectable and recurrent HNSCC were studied. Each patient received three ultrasound-guided injections at 21-day intervals of: 150, 600 or 400 mu g of DNA-hsp65. Toxicity was graded according to CTCAE directions. Tumor volume was measured before and after treatment using computed tomography scan. The evaluation included tumor mass variation, delayed-type hypersensitivity response and spontaneous peripheral blood mononuclear cell proliferation before and after treatment. The MTD was 400 mg per dose. DNA-hsp65 immunotherapy was well tolerated with moderate pain, edema and infections as the most frequent adverse effects. None of the patients showed clinical or laboratory alterations compatible with autoimmune reactions. Partial response was observed in 4 out of 14 patients who completed treatment, 2 of which are still alive more than 3 years after the completion of the trial. Therefore, DNA-hsp65 immunotherapy is a feasible and safe approach at the dose of 400 mg per injection in patients with HNSCC refractory to standard treatment. Further studies in a larger number of patients are needed to confirm the efficacy of this novel strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myb is a key transcription factor that can regulate proliferation, differentiation, and apoptosis, predominantly in the haemopoietic system. Abnormal expression of Myb is associated with a number of cancers, both haemopoietic and non-haemopoietic. In order to better understand the role of Myb in normal and tumorigenic processes, we undertook a cDNA array screen to identify genes that are regulated by this factor. In this way, we identified the gene encoding vascular endothelial growth factor (VEGF) as being potentially regulated by the Myb oncoprotein in myeloid cells. To determine whether this was a direct effect on VEGF gene transcription, we examined the activity of the murine VEGF promoter in the presence of either wild-type (WT) or mutant forms of Myb. It was found that WT Myb was able to activate the VEGF promoter and that a minimal promoter region of 120 bp was sufficient to confer Myb responsiveness. Surprisingly, activation of the VEGF promoter was independent of DNA binding by Myb. This was shown by the use of DNA binding-defective Myb mutants and by mutagenesis of a potential Myb-binding site in the minimal promoter. Mutation of Sp1 sites within this region abolished Myb-mediated regulation of a reporter construct, suggesting that Myb DNA binding-independent activation of VEGF expression occurs via these Sp1 binding elements. Regulation of VEGF production by Myb has implications for the potential role of Myb in myeloid leukaemias and in solid tumours where VEGF may be functioning as an autocrine growth factor. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of the Tus-Ter DNA replication fork arrest complex of Escherichia coli reveals a novel architecture for the bound Tus protein and a new type of DNA-binding motif, The structure of the complex may explain how Tus can block movement of a replication fork approaching from one direction and not the other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the replication terminator protein (RTP) and DNA terminator sites. While determination of the crystal structure of RTP has facilitated our understanding of how a single RTP dimer interacts with terminator DNA, additional information is required in order to understand the assembly of a functional fork arrest complex, which requires an interaction between two RTP dimers and the terminator site. In this study, we show that the conformation of the major B. subtilis DNA terminator, Terl, becomes considerably distorted upon binding RTP. Binding of the first dimer of RTP to the B site of Terl causes the DNA to become slightly unwound and bent by similar to 40 degrees. Binding of a second dimer of RTP to the A site causes the bend angle to increase to similar to 60 degrees. We have used this new data to construct two plausible models that might explain how the ternary terminator complex can block DNA replication in a polar manner, in the first model, polarity of action is a consequence of the two RTP-DNA half-sites having different conformations. These different conformations result from different RTP-DNA contacts at each half-site (due to the intrinsic asymmetry at the terminator DNA), as well as interactions (direct or indirect) between the RTP dimers on the DNA. In the second model, polar fork arrest activity is a consequence of the different affinities of RTP for the A and B sites of the terminator DNA, modulated significantly by direct or indirect interactions between the RTP dimers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indoleamine 2,3-dioxygenase (IDO), an enzyme that plays a critical role in fetomaternal tolerance, exerts immunoregulatory functions suppressing T-cell responses. The aims of this study were to promote IDO expression in rat islets using a nonviral gene transfer approach, and to analyze the effect of the in vivo induction of IDO in a model of allogeneic islet transplantation. The IDO cDNA was isolated from rat placenta, subcloned into a plasmid and transfected into rat islets using Lipofectamine. The efficiency of transfection was confirmed by qRT-PCR and functional analysis. The in vivo effect of IDO expression was analyzed in streptozotocin-induced diabetic Lewis rats transplanted with allogeneic islets under the renal capsule. Transplantation of IDO-allogeneic islets reversed diabetes and maintained metabolic control, in contrast to transplantation of allogeneic nontransfected islets, which failed shortly after transplantation in all animals. Graft survival of allograft islets transfected with IDO transplanted without any immunosuppression was superior to that observed in diabetic rats receiving nontransfected islets. These data demonstrated that IDO expression induced in islets by lipofection improved metabolic control of streptozotocin-diabetic rats and prolonged allograft survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various members of the bZip and bHLH-Zip families of eukaryotic transcription factors, including Jun, Fos, and Myc, have been identified as oncoproteins; mutation or deregulated expression of these proteins leads to certain types of cancer. These proteins can only bind to their cognate DNA enhancer sites following homodimerization, or heterodimerization with another family member, via their leucine zipper domain. Thus, a novel anticancer strategy would be to inhibit dimerization of these proteins, thereby blocking their DNA binding and transactivation functions. In this paper we show that it is possible to rationally design leucine zipper peptides that bind with high affinity to the leucine zipper dimerization domains of c-Jun and c-Fos, thus preventing the formation of functional c-Jun homodimers and c-Jun:c-Fos heterodimers; we refer to such peptides as superzippers (SZs). In vivo, c-Jun:SZ and c-Fos:SZ heterodimers should be nonfunctional as they lack one of the two basic domains that are essential for DNA binding. While the transport of a peptidic agent into cells often poses a severe obstacle to its therapeutic use, we show that a 46-residue leucine zipper peptide can be transported into HeLa cells by coupling it to a 17-residue carrier peptide from the Antennapedia homeodomain, thus paving the way for detailed studies of the therapeutic potential of superzipper peptides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six Burkholderia solanacearum (formerly Pseudomonas solanacearum) genomic DNA fragments were isolated, using RAPD techniques and cloning, from the three genetically diverse strains: ACH092 (Biovar 4), ACH0158 (Biovar 2) and ACH0171 (Biovar 3) (1). One of these cloned fragments was selected because it was present constantly in all bacterial strains analysed. The remaining five clones were selected because Southern hybridisation revealed that each showed partial or complete specificity towards the strain of origin. A seventh genomic fragment showing a strain-specific distribution in Southern hybridisations was obtained by differential restriction, hybridisation and cloning of genomic DNA. Each of these clones was sequenced and primers to amplify the insert were designed. When DNA from the strain of origin was used as template, PCR amplification for each of these fragments yielded a single band on gel analysis. One pair of primers amplified the species-constant fragment of 281 bp from DNA of all B. solanacearum strains investigated, from DNA of the closely related bacterium which causes ''blood disease'' of banana (BDB) and in P. syzigii. The sensitivity of detection of B. solanacearum using these ubiquitous primers was between 1.3 and 20 bacterial cells. The feasibility and reliability of a PCR approach to detection and identification of B. solanacearum was tested in diverse strains of the bacterium in several countries and laboratories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The DNA-binding activities of AP-1 and Egr proteins were investigated in nuclear extracts of rat brain regions during ethanol withdrawal. Both DNA-binding activities were transiently elevated in the hippocampus and cerebellum 16 h after withdrawal. In the cerebral cortex, AP-1 and Egr DNA-binding activities increased at 16 h and persisted until 32 and 72 h, respectively. The AP-1 DNA-binding activities in all regions at all times after withdrawal were composed of FosB, c-Jun, JunB, and JunD. c-Fos was detected at all times in the cerebral cortex, at 16 h only in the hippocampus, and from 16 to 72 h in the cerebellum. Withdrawal severity did not affect the composition of the AP-1 DNA-binding activities. Two Egr DNA-binding activities were present in the cortex and hippocampus. The faster-migrating complex predominated in hippocampus, and only the slower-migrating complex (identified as Egr-1) was present in the cerebellum. The increase in DNA-binding activity of immediate early gene-encoded transcription factors supports their proposed role in initiating a cascade of altered gene expression underlying the long-term neuronal response to ethanol withdrawal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: UV radiation is the major environmental factor related to development of cutaneous melanoma. Besides sun exposure and the influence of latitude, some host characteristics such as skin phototype and hair and eye color are also risk factors for melanoma. Polymorphisms in DNA repair genes could be good candidates for susceptibility genes, mainly in geographical regions exposed to high solar radiation. Objective: Evaluate the role of host characteristic.; and DNA repair polymorphism in melanoma risk in Brazil. Methods: We carried out a hospital-based case-control study in Brazil to evaluate the contribution of host factors and polymorphisms in DNA repair to melanoma risk. A total of 412 patients (202 with melanoma and 210 controls) were analyzed regarding host characteristics for melanoma risk as well as for 11 polymorphisms in DNA repair genes. Results: We found an association of host characteristics with melanoma development, such as eye and hair color, fair skin, history of pigmented lesions removed, sunburns in childhood and adolescence, and also European ancestry. Regarding DNA repair gene polymorphisms, we found protection for the XPG 1104 His/His genotype (OR 0.32; 95% CI 0.13-0.75), and increased risk for three polymorphisms in the XPC gene (PAT+; IV-6A and 939Gln), which represent a haplotype for XPC. Melanoma risk was higher in individuals carrying the complete XPC haplotype than each individual polymorphism (OR 3.64; 95% CI 1.77-7.48). Conclusions: Our data indicate that the host factors European ancestry and XPC polymorphisms contributed to melanoma risk in a region exposed to high sun radiation. (C) 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Drug delivery through the skin has been used to target the epidermis, dermis and deeper tissues and for systemic delivery, The major barrier for the transport of drugs through the skin is the stratum corneum, with most transport occurring through the intercellular region, The polarity of the intercellular region appears to be similar to butanol, with the diffusion of solutes being hindered by saturable hydrogen bonding to the polar head groups of the ceramides, fatty acids and other intercellular lipids, Accordingly, the permeability of the more lipophilic solutes is greatest from aqueous solutions, whereas polar solute permeability is favoured by hydrocarbon-based vehicles. 2. The skin is capable of metabolizing many substances and, through its microvasculature, limits the transport of most substances into regions below the dermis. 3. Although the flux of solutes through the skin should be identical for different vehicles when the solute exists as a saturated solution, the fluxes vary in accordance with the skin penetration enhancement properties of the vehicle. It is therefore desirable that the regulatory standards required for the bioequivalence of topical products include skin studies. 4. Deep tissue penetration can be related to solute protein binding, solute molecular size and dermal blood flow. 5. Iontophoresis is a promising area of skin drug delivery, especially for ionized solutes and when a rapid effect is required. 6. In general, psoriasis and other skin diseases facilitate drug delivery through the skin. 7. It is concluded that the variability in skin permeability remains an obstacle in optimizing drug delivery by this route.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Egr-1 and related proteins are inducible transcription factors within the brain recognizing the same consensus DNA sequence. Three Egr DNA-binding activities were observed in regions of the naive rat brain. Egr-1 was present in all brain regions examined. Bands composed, at least in part, of Egr-2 and Egr-3 were present in different relative amounts in the cerebral cortex, striatum, hippocampus, thalamus, and midbrain. All had similar affinity and specificity for the Egr consensus DNA recognition sequence. Administration of the convulsants NMDA, kainate, and pentylenetetrazole differentially induced Egr-1 and Egr-2/3 DNA-binding activities in the cerebral cortex, hippocampus, and cerebellum. All convulsants induced Egr-1 and Egr-2 immunoreactivity in the cerebral cortex and hippocampus. These data indicate that the members of the Egr family are regulated at different levels and may interact at promoters containing the Egr consensus sequence to fine tune a program of gene expression resulting from excitatory stimuli.