909 resultados para DIAGNOSTIC USES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Absolute atomic oxygen ground state densities in a radio-frequency driven atmospheric pressure plasma jet, operated in a helium-oxygen mixture, are determined using diagnostic based modeling. One-dimensional numerical simulations of the electron dynamics are combined with time integrated optical emission spectroscopy. The population dynamics of the upper O 3p 3P (l=844 nm) atomic oxygen state is governed by direct electron impact excitation, dissociative excitation, radiation losses, and collisional induced quenching. Absolute values for atomic oxygen densities are obtained through comparison with the upper Ar 2p1 (l=750.4 nm) state. Results for spatial profiles and power variations are presented and show excellent quantitative agreement with independent two-photon laser-induced fluorescence measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the application of multivariate regression techniques to the Tennessee Eastman benchmark process for modelling and fault detection. Two methods are applied : linear partial least squares, and a nonlinear variant of this procedure using a radial basis function inner relation. The performance of the RBF networks is enhanced through the use of a recently developed training algorithm which uses quasi-Newton optimization to ensure an efficient and parsimonious network; details of this algorithm can be found in this paper. The PLS and PLS/RBF methods are then used to create on-line inferential models of delayed process measurements. As these measurements relate to the final product composition, these models suggest that on-line statistical quality control analysis should be possible for this plant. The generation of `soft sensors' for these measurements has the further effect of introducing a redundant element into the system, redundancy which can then be used to generate a fault detection and isolation scheme for these sensors. This is achieved by arranging the sensors and models in a manner comparable to the dedicated estimator scheme of Clarke et al. 1975, IEEE Trans. Pero. Elect. Sys., AES-14R, 465-473. The effectiveness of this scheme is demonstrated on a series of simulated sensor and process faults, with full detection and isolation shown to be possible for sensor malfunctions, and detection feasible in the case of process faults. Suggestions for enhancing the diagnostic capacity in the latter case are covered towards the end of the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. We aim to investigate the chemistry and gas phase abundance of HNCO and the variation of the HNCO/CS abundance ratio as a diagnostic of the physics and chemistry in regions of massive star formation. Methods. A numerical-chemical model has been developed which self-consistently follows the chemical evolution of a hot core. The model comprises of two distinct stages. The first stage follows the isothermal, modified free-fall collapse of a molecular dark cloud. This is immediately followed by an increase in temperature which represents the switch on of a central massive star and the subsequent evolution of the chemistry in a hot, dense gas cloud (the hot core). During the collapse phase, gas species are allowed to accrete on to grain surfaces where they can participate in further reactions. During the hot core phase surface species thermally desorb back in to the ambient gas and further chemical evolution takes place. For comparison, the chemical network was also used to model a simple dark cloud and photodissociation regions. Results. Our investigation reveals that HNCO is inefficiently formed when only gas-phase formation pathways are considered in the chemical network with reaction rates consistent with existing laboratory data. This is particularly true at low temperatures but also in regions with temperatures up to ~200 K. Using currently measured gas phase reaction rates, obtaining the observed HNCO abundances requires its formation on grain surfaces – similar to other “hot core” species such as CH3OH. However our model shows that the gas phase HNCO in hot cores is not a simple direct product of the evaporation of grain mantles. We also show that the HNCO/CS abundance ratio varies as a function of time in hot cores and can match the range of values observed. This ratio is not unambiguously related to the ambient UV field as been suggested – our results are inconsistent with the hypothesis of Martín et al. (2008, ApJ, 678, 245). In addition, our results show that this ratio is extremely sensitive to the initial sulphur abundance. We find that the ratio grows monotonically with time with an absolute value which scales approximately linearly with the S abundance at early times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diagnostic based modelling (DBM) actively combines complementary advantages of numerical plasma simulations and relatively simple optical emission spectroscopy (OES). DBM is employed to determine absolute atomic oxygen ground state densities in a helium–oxygen radio-frequency driven atmospheric pressure plasma jet. A comparatively simple one-dimensional simulation yields detailed information on electron properties governing the population dynamics of excited states. Important characteristics of the electron dynamics are found to be largely insensitive to details of the chemical composition and to be in very good agreement with space and phase-resolved OES. Benchmarking the time and space resolved simulation allows us to subsequently derive effective excitation rates as the basis for DBM with simple space and time integrated OES. The population dynamics of the upper O 3p 3P (? = 844 nm) atomic oxygen state is governed by direct electron impact excitation, dissociative excitation, radiation losses and collisional induced quenching. Absolute values for atomic oxygen densities are obtained through tracer comparison with the upper Ar 2p1 (? = 750.4 nm) state. The presented results for the atomic oxygen density show excellent quantitative agreement with independent two-photon laser-induced fluorescence measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background-Asthma, post-nasal drip syndrome (PNDS), and gastrooesophageal reflux (GOR) account for many cases of chronic non-productive cough (CNPC). Each may simultaneously contribute to cough even when clinically silent, and failure to recognise their contribution may lead to unsuccessful treatment.

Methods—Patients (all lifetime non-smokers with normal chest radiographs and spirometric measurements) referred with CNPC persisting for more than three weeks as their sole respiratory symptom underwent histamine challenge, home peak flow measurements, ear, nose and throat (ENT) examination, sinus CT scanning, and 24 hour oesophageal pH monitoring. Treatment was prescribed on the basis of diagnoses informed by investigation results.

RESULTS—Forty three patients (29 women) of mean age 47.5 years (range 18-77) and mean cough duration 67 months (range 2-240) were evaluated. On the basis of a successful response to treatment, a cause for the cough was identified in 35 patients (82%) as follows: cough variant asthma (CVA) (10 cases), PNDS (9 cases), GOR (8cases), and dual aetiologies (8 cases). Histamine challenge correctly predicted CVA in 15 of 17 (88%) positive tests. ENT examination and sinus CT scans each had low positive predictive values for PNDS (10 of 16 (63%) and 12 of 18 (67%) positive cases, respectively), suggesting that upper airways disease frequently co-exists but does not always contribute to cough. When negative, histamine challenge and 24 hour oesophageal pH monitoring effectively ruled out CVA and GOR, respectively, as a cause for cough.

CONCLUSION—This comprehensive approach aids the accurate direction of treatment and, while CVA, PNDS and GOR remain the most important causes of CNPC to consider, a group with no identifiable aetiology remains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diagnostic-based modeling (DBM) actively combines complementary advantages of numerical plasma simulations and relatively simple optical emission spectroscopy (OES). DBM is applied to determine spatial absolute atomic oxygen ground-state density profiles in a micro atmospheric-pressure plasma jet operated in He–O2. A 1D fluid model with semi-kinetic treatment of the electrons yields detailed information on the electron dynamics and the corresponding spatio-temporal electron energy distribution function. Benchmarking this time- and space-resolved simulation with phase-resolved OES (PROES) allows subsequent derivation of effective excitation rates as the basis for DBM. The population dynamics of the upper O(3p3P) oxygen state (? = 844 nm) is governed by direct electron impact excitation, dissociative excitation, radiation losses, and collisional induced quenching. Absolute values for atomic oxygen densities are obtained through tracer comparison with the upper Ar(2p1) state (? = 750.4 nm). The resulting spatial profile for the absolute atomic oxygen density shows an excellent quantitative agreement to a density profile obtained by two-photon absorption laser-induced fluorescence spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Retinitis pigmentosa (RP) causes hereditary blindness in adults (prevalence, approximately 1 in 4000). Each of the more than 30 causative genes identified to date are responsible for only a small percentage of cases. Genetic diagnosis via traditional methods is problematic, and a single test with a higher probability of detecting the causative mutation would be very beneficial for the clinician. The goal of this study therefore was to develop a high-throughput screen capable of detecting both known mutations and novel mutations within all genes implicated in autosomal recessive or simplex RP. DESIGN: Evaluation of diagnostic technology. PARTICIPANTS AND CONTROLS: Participants were 56 simplex and autosomal recessive RP patients, with 360 population controls unscreened for ophthalmic disease. METHODS: A custom genechip capable of resequencing all exons containing known mutations in 19 disease-associated genes was developed (RP genechip). A second, commercially available arrayed primer extension (APEX) system was used to screen 501 individual previously reported variants. The ability of these high-throughput approaches to identify pathogenic variants was assessed in a cohort of simplex and autosomal recessive RP patients. MAIN OUTCOME MEASURES: Number of mutations and potentially pathogenic variants identified. RESULTS: The RP genechip identified 44 sequence variants: 5 previously reported mutations; 22 known single nucleotide polymorphisms (SNPs); 11 novel, potentially pathogenic variants; and 6 novel SNPs. There was strong concordance with the APEX array, but only the RP genechip detected novel variants. For example, identification of a novel mutation in CRB1 revealed a patient, who also had a single previously known CRB1 mutation, to be a compound heterozygote. In some individuals, potentially pathogenic variants were discovered in more than one gene, consistent with the existence of disease modifier effects resulting from mutations at a second locus. CONCLUSIONS: The RP genechip provides the significant advantage of detecting novel variants and could be expected to detect at least one pathogenic variant in more than 50% of patients. The APEX array provides a reliable method to detect known pathogenic variants in autosomal recessive RP and simplex RP patients and is commercially available. High-throughput genotyping for RP is evolving into a clinically useful genetic diagnostic tool.