968 resultados para D. Non-destructive testing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different treatments (consolidation and water-repellent) were applied on samples of marble and granite from the Front stage of the Roman Theatre of Merida (Spain). The main goal is to study the effects of these treatments on archaeological stone material, by analyzing the surface changes. X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy techniques, as well as Nuclear Magnetic Resonance have been used in order to study changes in the surface properties of the material, comparing treated and untreated specimens. The results confirm that silicon (Si) marker tracking allows the detection of applied treatments, increasing the peak signal in treated specimens. Furthermore, it is also possible to prove changes both within the pore system of the materialand in the distribution of surface water, resulting from the application of these products

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nondestructive techniques are widely used to assess existing timber structures. The models proposed for these methods are usually performed in the laboratory using small clear wood specimens. But in real situations many anomalies, defects and biological damage are found in wood. In these cases the existing models only indicate that the values are outside normality without providing any other information. To solve this problem, a study of non-destructive probing methods for wood was performed, testing the behaviour of four different techniques (penetration resistance, pullout resistance, drill resistance and chip drill extraction) on wood samples with different biological damage, simulating an in-situ test. The wood samples were obtained from existing Spanish timber structures with biotic damage caused by borer insects, termites, brown rot and white rot. The study concludes that all of the methods offer more or less detailed information about the degree of deterioration of wood, but that the first two methods (penetration and pullout resistance) cannot distinguish between pathologies. On the other hand, drill resistance and chip drill extraction make it possible to differentiate pathologies and even to identify species or damage location. Finally, the techniques used were compared to characterize their advantages and disadvantages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objetivo definitivo de esta investigación es contribuir con la profundización del conocimiento en las tecnologías de remediación, específicamente las térmicas, debido a que la contaminación de suelos es motivo de preocupación por ser uno de los graves impactos ambientales que origina el hombre con sus actividades, especialmente las industriales, afectando a la salud de los seres humanos, y el medio ambiente, representando elevados costes de saneamiento y en ocasiones problemas graves de salud de las comunidades aledañas. Se establecen tres fases de investigación. En la primera se diseña el sistema de termodesorción a escala piloto, se desarrolla las corridas experimentales, la segunda con corridas en laboratorio para investigar sobre los parámetros que intervienen en el proyecto. Se hacen las corridas respectivas para determinar la eficacia del sistema, y la tercera fase que consiste en comparar los modelos teóricos de Hartley, con los de Hartley Graham –Bryce y el de Hamaker para determinar su aproximación con los resultados reales. Apoyado en investigaciones anteriores, se diseñó y construyó un sistema de desorción térmica, el cual consiste en un horno tipo caja con 4 calentadores (resistencias), y una campana con un filtro para evitar la contaminación atmosférica, así mismo, se diseñó un sistema de control que permitió hacer las corridas con 1/3 de la potencia, con una relación de encendido apagado 3:1 respectivamente. Para validar los resultados obtenidos en el estudio matemático, se compararon dos modelos con la finalidad cuál de ellos se aproxima más a la realidad, se tomaron los ensayos con sus tiempos de operación a las temperaturas y se trabajó a distintas bandas de temperaturas para verificar la fiabilidad del proceso matemático. La temperatura es un variable importante en los procesos de desorción, como los son también la humedad del suelo, pues esta va influir directamente en el tiempo de remediación, por lo que es importante tomarla en cuenta. De igual forma el tipo de suelo va influir en los resultados, siendo las arenas más aptas para este tipo de remediación. Los resultados de la modelización son presentados para temperaturas constantes, el cual difiere de la realidad, pues el proceso de calentamiento es lento y va en accenso dependiendo del contenido de humedad y de las propiedades del suelo. La experimentación realizada concluye con buenos resultados de la aplicación de sistemas de desorción de acuerdo a las variables de Panamá. Con relación al grado de cumplimiento respecto a las normativas actuales relacionadas a los límites máximos permitidos. Los resultados garantizan las posibilidades del proceso de remediación térmica de suelos contaminados con combustibles en rango de diésel, garantizando niveles aceptables de limpieza en un tiempo menor a otras metodologías no destructivas pudieran tomar. ABSTRACT The ultimate goal of this investigation is to enhance the pool of knowledge related to remediation technologies, specifically thermal desorption. The motivation for this study is based on concerns due to pollution of land as one of the most serious environmental impacts caused by anthropogenic effects, specially industrial activities, affecting human health and the environment in general, which represents high reclamation costs, and in some cases, serious health issues in nearby communities. Three phases have been established for this study. The first phase involves the design of a thermal desorption system as a pilot experiment, and associated tests. The second phase consists of laboratory testing to investigate the parameters that affect the investigation, as well as to determine the efficacy of the system. The third phase covers the comparison of theorical models as proposed by Hartley, Hartley Graham – Bryce, and Hamaker, as well as the evaluation of these models versus the laboratory results. Supported by previous researches, the thermal desorption system was designed and installed as a “box” type oven with four heaters (resistances) and one absorption hood with a filter to avoid atmospheric contamination. In the same way, a control system was designed allowing testing with 1/3 of the power, with an on/off rate of 3:1 respectively. In order to validate the results, two mathematical models were compared to identify which model is closer to the experimental results; test results were documented with respective durations and temperatures; and experiments were executed using different ranges of temperature to validate the consistency of the mathematical process. Temperature is an important variable that should be considered for the desorption processes, as well as the humidity content within the soil, that has direct influence over the required duration to achieve remediation. In the same manner, the type of soil also influences the results, where sands are more efficient for this type of remediation process. The results from this experiment are according to constant temperatures, which is not a complete representation of the reality, as the heating process is slow and the temperature gradually increases according to the humidity content and other properties of the soil. The experiment shows good results for the application of thermal desorption systems according to the variables in Panama, as well as the level of compliance required to fulfill current regulations and mandatory maximum limits. The results guarantee the possibility of soil thermo-remediation as a resource to clean sites that have been polluted with diesel-like combustibles, allowing acceptable levels in a period of time that is lower than with other non-destructive remediation technics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commercial off-the-shelf microprocessors are the core of low-cost embedded systems due to their programmability and cost-effectiveness. Recent advances in electronic technologies have allowed remarkable improvements in their performance. However, they have also made microprocessors more susceptible to transient faults induced by radiation. These non-destructive events (soft errors), may cause a microprocessor to produce a wrong computation result or lose control of a system with catastrophic consequences. Therefore, soft error mitigation has become a compulsory requirement for an increasing number of applications, which operate from the space to the ground level. In this context, this paper uses the concept of selective hardening, which is aimed to design reduced-overhead and flexible mitigation techniques. Following this concept, a novel flexible version of the software-based fault recovery technique known as SWIFT-R is proposed. Our approach makes possible to select different registers subsets from the microprocessor register file to be protected on software. Thus, design space is enriched with a wide spectrum of new partially protected versions, which offer more flexibility to designers. This permits to find the best trade-offs between performance, code size, and fault coverage. Three case studies have been developed to show the applicability and flexibility of the proposal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents the analysis of an important historical building: the Saint James Theater in the city of Corfù (Greece) actually used as the Municipality House. The building, located in the center of the city, is made of carves stones and is characterized by a stocky shape and by the presence of wooden floors. The study deals with the structural identification of such structure through the analysis of its ambient vibrations recorded by means of accelerometers with high accuracy. A full dynamic testing was developed using ambient vibrations to identify the main modal parameters and to make a non-destructive characterization of this building. The results of these dynamic tests are compared with the modal analysis of a complex finite element (FE) simulation of the structure. This analysis may present several problems and uncertainties for this stocky building. Due to the presence of wooden floors, the local modes can be highly excited and, as a consequence, the evaluation of the structural modal parameters presents some difficulties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Southern Ocean (SO) plays a key role in modulating atmospheric CO2 via physical and biological processes. However, over much of the SO, biological activity is iron-limited. New in situ data from the Antarctic zone south of Africa in a region centered at -20°E - 25°E reveal a previously overlooked region of high primary production, comparable in size to the northwest African upwelling region. Here, sea ice together with enclosed icebergs is channeled by prevailing winds to the eastern boundary of the Weddell Gyre, where a sharp transition to warmer waters causes melting. This cumulative melting provides a steady source of iron, fuelling an intense phytoplankton bloom that is not fully captured by monthly satellite production estimates. These findings imply that future changes in sea-ice cover and dynamics could have a significant effect on carbon sequestration in the SO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: A clinical evaluation of the Grand Seiko Auto Ref/Keratometer WAM-5500 (Japan) was performed to evaluate validity and repeatability compared with non-cycloplegic subjective refraction and Javal–Schiotz keratometry. An investigation into the dynamic recording capabilities of the instrument was also conducted. Methods: Refractive error measurements were obtained from 150 eyes of 75 subjects (aged 25.12 ± 9.03 years), subjectively by a masked optometrist, and objectively with the WAM-5500 at a second session. Keratometry measurements from the WAM-5500 were compared to Javal–Schiotz readings. Intratest variability was examined on all subjects, whilst intertest variability was assessed on a subgroup of 44 eyes 7–14 days after the initial objective measures. The accuracy of the dynamic recording mode of the instrument and its tolerance to longitudinal movement was evaluated using a model eye. An additional evaluation of the dynamic mode was performed using a human eye in relaxed and accommodated states. Results: Refractive error determined by the WAM-5500 was found to be very similar (p = 0.77) to subjective refraction (difference, -0.01 ± 0.38 D). The instrument was accurate and reliable over a wide range of refractive errors (-6.38 to +4.88 D). WAM-5500 keratometry values were steeper by approximately 0.05 mm in both the vertical and horizontal meridians. High intertest repeatability was demonstrated for all parameters measured: for sphere, cylinder power and MSE, over 90% of retest values fell within ±0.50 D of initial testing. In dynamic (high-speed) mode, the root-mean-square of the fluctuations was 0.005 ± 0.0005 D and a high level of recording accuracy was maintained when the measurement ring was significantly blurred by longitudinal movement of the instrument head. Conclusion: The WAM-5500 Auto Ref/Keratometer represents a reliable and valid objective refraction tool for general optometric practice, with important additional features allowing pupil size determination and easy conversion into high-speed mode, increasing its usefulness post-surgically following accommodating intra-ocular lens implantation, and as a research tool in the study of accommodation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis considers two basic aspects of impact damage in composite materials, namely damage severity discrimination and impact damage location by using Acoustic Emissions (AE) and Artificial Neural Networks (ANNs). The experimental work embodies a study of such factors as the application of AE as Non-destructive Damage Testing (NDT), and the evaluation of ANNs modelling. ANNs, however, played an important role in modelling implementation. In the first aspect of the study, different impact energies were used to produce different level of damage in two composite materials (T300/914 and T800/5245). The impacts were detected by their acoustic emissions (AE). The AE waveform signals were analysed and modelled using a Back Propagation (BP) neural network model. The Mean Square Error (MSE) from the output was then used as a damage indicator in the damage severity discrimination study. To evaluate the ANN model, a comparison was made of the correlation coefficients of different parameters, such as MSE, AE energy, AE counts, etc. MSE produced an outstanding result based on the best performance of correlation. In the second aspect, a new artificial neural network model was developed to provide impact damage location on a quasi-isotropic composite panel. It was successfully trained to locate impact sites by correlating the relationship between arriving time differences of AE signals at transducers located on the panel and the impact site coordinates. The performance of the ANN model, which was evaluated by calculating the distance deviation between model output and real location coordinates, supports the application of ANN as an impact damage location identifier. In the study, the accuracy of location prediction decreased when approaching the central area of the panel. Further investigation indicated that this is due to the small arrival time differences, which defect the performance of ANN prediction. This research suggested increasing the number of processing neurons in the ANNs as a practical solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone is the second most widely transplanted tissue after blood. Synthetic alternatives are needed that can reduce the need for transplants and regenerate bone by acting as active temporary templates for bone growth. Bioactive glasses are one of the most promising bone replacement/regeneration materials because they bond to existing bone, are degradable and stimulate new bone growth by the action of their dissolution products on cells. Sol-gel-derived bioactive glasses can be foamed to produce interconnected macropores suitable for tissue ingrowth, particularly cell migration and vascularization and cell penetration. The scaffolds fulfil many of the criteria of an ideal synthetic bone graft, but are not suitable for all bone defect sites because they are brittle. One strategy for improving toughness of the scaffolds without losing their other beneficial properties is to synthesize inorganic/organic hybrids. These hybrids have polymers introduced into the sol-gel process so that the organic and inorganic components interact at the molecular level, providing control over mechanical properties and degradation rates. However, a full understanding of how each feature or property of the glass and hybrid scaffolds affects cellular response is needed to optimize the materials and ensure long-term success and clinical products. This review focuses on the techniques that have been developed for characterizing the hierarchical structures of sol-gel glasses and hybrids, from atomicscale amorphous networks, through the covalent bonding between components in hybrids and nanoporosity, to quantifying open macroporous networks of the scaffolds. Methods for non-destructive in situ monitoring of degradation and bioactivity mechanisms of the materials are also included. © 2012 The Royal Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis focuses on the investigation of the abrasion resistance of fibre reinforced concrete floors at both the macro and micro levels. A literature review of the available literature concerning subjects allied to the current project is included. This highlights themes relevant to wear mechanisms and the factors influencing it: factors that affect the abrasion resistance of concrete and several test methods for assessing it; and the historical development of fibres and the properties of different fibre types and their influence on concrete. Three accelerated abrasion testers were compared and critically discussed for their suitability for assessing the abrasion resistance of concrete floors. Based on the experimental findings one accelerated abrasion apparatus was selected as more appropriate to be used for carrying out the main investigations. The laboratory programme that followed was undertaken to investigate the influence of various material and construction factors on abrasion resistance. These included mix variations (w/c ratio), fibre reinforcement, geometry, type and volume, curing method and superplasticizing agents. The results clearly show that these factors significantly affected abrasion resistance and several mechanisms were presumed to explain and better understand these observations. To verify and understand these mechanisms that are accountable for the breakdown of concrete slabs, the same concrete specimens that were used for the macro-study, were also subjected to microstructutural investigations using techniques such as Microhardness examination, Mercury intrusion porosimetry and Petrographic examination. It has been found that the abrasion resistance of concrete is primarily dependent on the microstructure and porosity of the concrete nearest to the surface. The feasibility of predicting the abrasion resistance of fibre reinforced concrete floors by indirect and non-destructive methods was investigated using five methods that have frequently been used for assessing the quality of concrete. They included the initial surface absorption test, the impact test, ball cratering, the scratch test and the base hardness test. The impact resistance (BRE screed tester) and scratch resistance (Base hardness tester) were found to be the most sensitive to factors affecting abrasion resistance and hence are considered to be the most appropriate testing techniques. In an attempt to develop an appropriate method for assessing the abrasion resistance of heavy-duty industrial concrete floors, it was found that the presence of curing/sealing compound on the concrete surface at the time of accelerated abrasion testing produces inappropriate results. A preliminary investigation in the direction of modifying the Aston accelerated abrasion tester has been carried out and a more aggressive head has been developed and is pending future research towards standardisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological soil crusts (BSCs) are formed by aggregates of soil particles and communities of microbial organisms and are common in all drylands. The role of BSCs on infiltration remains uncertain due to the lack of data on their role in affecting soil physical properties such as porosity and structure. Quantitative assessment of these properties is primarily hindered by the fragile nature of the crusts. Here we show how the use of a combination of non-destructive imaging X-ray microtomography (XMT) and Lattice Boltzmann method (LBM) enables quantification of key soil physical parameters and the modeling of water flow through BSCs samples from Kalahari Sands, Botswana. We quantify porosity and flow changes as a result of mechanical disturbance of such a fragile cyanobacteria-dominated crust. Results show significant variations in porosity between different types of crusts and how they affect the flow and that disturbance of a cyanobacteria-dominated crust results in the breakdown of larger pore spaces and reduces flow rates through the surface layer. We conclude that the XMT–LBM approach is well suited for study of fragile surface crust samples where physical and hydraulic properties cannot be easily quantified using conventional methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stereotype threat (Steele & Aronson, 1995) refers to the risk of confirming a negative stereotype about one’s group in a particular performance domain. The theory assumes that performance in the stereotyped domain is most negatively affected when individuals are more highly identified with the domain in question. As federal law has increased the importance of standardized testing at the elementary level, it can be reasonably hypothesized that the standardized test performance of African American children will be depressed when they are aware of negative societal stereotypes about the academic competence of African Americans. This sequential mixed-methods study investigated whether the standardized testing experiences of African American children in an urban elementary school are related to their level of stereotype awareness. The quantitative phase utilized data from 198 African American children at an urban elementary school. Both ex-post facto and experimental designs were employed. Experimental conditions were diagnostic and non-diagnostic testing experiences. The qualitative phase utilized data from a series of six focus group interviews conducted with a purposefully selected group of 4 African American children. The interview data were supplemented with data from 30 hours of classroom observations. Quantitative findings indicated that the stereotype threat condition evoked by diagnostic testing depresses the reading test performance of stereotype-aware African American children (F[1, 194] = 2.21, p < .01). This was particularly true of students who are most highly domain-identified with reading (F[1, 91] = 19.18, p < .01). Moreover, findings indicated that only stereotype-aware African American children who were highly domain-identified were more likely to experience anxiety in the diagnostic condition (F[1, 91] = 5.97, p < .025). Qualitative findings revealed 4 themes regarding how African American children perceive and experience the factors related to stereotype threat: (1) a narrow perception of education as strictly test preparation, (2) feelings of stress and anxiety related to the state test, (3) concern with what “others” think (racial salience), and (4) stereotypes. A new conceptual model for stereotype threat is presented, and future directions including implications for practice and policy are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stereotype threat (Steele & Aronson, 1995) refers to the risk of confirming a negative stereotype about one’s group in a particular performance domain. The theory assumes that performance in the stereotyped domain is most negatively affected when individuals are more highly identified with the domain in question. As federal law has increased the importance of standardized testing at the elementary level, it can be reasonably hypothesized that the standardized test performance of African American children will be depressed when they are aware of negative societal stereotypes about the academic competence of African Americans. This sequential mixed-methods study investigated whether the standardized testing experiences of African American children in an urban elementary school are related to their level of stereotype awareness. The quantitative phase utilized data from 198 African American children at an urban elementary school. Both ex-post facto and experimental designs were employed. Experimental conditions were diagnostic and non-diagnostic testing experiences. The qualitative phase utilized data from a series of six focus group interviews conducted with a purposefully selected group of 4 African American children. The interview data were supplemented with data from 30 hours of classroom observations. Quantitative findings indicated that the stereotype threat condition evoked by diagnostic testing depresses the reading test performance of stereotype-aware African American children (F[1, 194] = 2.21, p < .01). This was particularly true of students who are most highly domain-identified with reading (F[1, 91] = 19.18, p < .01). Moreover, findings indicated that only stereotype-aware African American children who were highly domain-identified were more likely to experience anxiety in the diagnostic condition (F[1, 91] = 5.97, p < .025). Qualitative findings revealed 4 themes regarding how African American children perceive and experience the factors related to stereotype threat: (1) a narrow perception of education as strictly test preparation, (2) feelings of stress and anxiety related to the state test, (3) concern with what “others” think (racial salience), and (4) stereotypes. A new conceptual model for stereotype threat is presented, and future directions including implications for practice and policy are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scatter in medical imaging is typically cast off as image-related noise that detracts from meaningful diagnosis. It is therefore typically rejected or removed from medical images. However, it has been found that every material, including cancerous tissue, has a unique X-ray coherent scatter signature that can be used to identify the material or tissue. Such scatter-based tissue-identification provides the advantage of locating and identifying particular materials over conventional anatomical imaging through X-ray radiography. A coded aperture X-ray coherent scatter spectral imaging system has been developed in our group to classify different tissue types based on their unique scatter signatures. Previous experiments using our prototype have demonstrated that the depth-resolved coherent scatter spectral imaging system (CACSSI) can discriminate healthy and cancerous tissue present in the path of a non-destructive x-ray beam. A key to the successful optimization of CACSSI as a clinical imaging method is to obtain anatomically accurate phantoms of the human body. This thesis describes the development and fabrication of 3D printed anatomical scatter phantoms of the breast and lung.

The purpose of this work is to accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Tissue-equivalent anatomical phantoms were designed to assess the capability of the CACSSI system to classify different types of breast tissue (adipose, fibroglandular, malignant). These phantoms were 3D printed based on DICOM data obtained from CT scans of prone breasts. The phantoms were tested through comparison of measured scatter signatures with those of adipose and fibroglandular tissue from literature. Tumors in the phantom were modeled using a variety of biological tissue including actual surgically excised benign and malignant tissue specimens. Lung based phantoms have also been printed for future testing. Our imaging system has been able to define the location and composition of the various materials in the phantom. These phantoms were used to characterize the CACSSI system in terms of beam width and imaging technique. The result of this work showed accurate modeling and characterization of the phantoms through comparison of the tissue-equivalent form factors to those from literature. The physical construction of the phantoms, based on actual patient anatomy, was validated using mammography and computed tomography to visually compare the clinical images to those of actual patient anatomy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Computer-Aided-Design (CAD) and Computer-Aided-Manufacture (CAM) has been developed to fabricate fixed dental restorations accurately, faster and improve cost effectiveness of manufacture when compared to the conventional method. Two main methods exist in dental CAD/CAM technology: the subtractive and additive methods. While fitting accuracy of both methods has been explored, no study yet has compared the fabricated restoration (CAM output) to its CAD in terms of accuracy. The aim of this present study was to compare the output of various dental CAM routes to a sole initial CAD and establish the accuracy of fabrication. The internal fit of the various CAM routes were also investigated. The null hypotheses tested were: 1) no significant differences observed between the CAM output to the CAD and 2) no significant differences observed between the various CAM routes. Methods: An aluminium master model of a standard premolar preparation was scanned with a contact dental scanner (Incise, Renishaw, UK). A single CAD was created on the scanned master model (InciseCAD software, V2.5.0.140, UK). Twenty copings were then fabricated by sending the single CAD to a multitude of CAM routes. The copings were grouped (n=5) as: Laser sintered CoCrMo (LS), 5-axis milled CoCrMo (MCoCrMo), 3-axis milled zirconia (ZAx3) and 4-axis milled zirconia (ZAx4). All copings were micro-CT scanned (Phoenix X-Ray, Nanotom-S, Germany, power: 155kV, current: 60µA, 3600 projections) to produce 3-Dimensional (3D) models. A novel methodology was created to superimpose the micro-CT scans with the CAD (GOM Inspect software, V7.5SR2, Germany) to indicate inaccuracies in manufacturing. The accuracy in terms of coping volume was explored. The distances from the surfaces of the micro-CT 3D models to the surfaces of the CAD model (CAD Deviation) were investigated after creating surface colour deviation maps. Localised digital sections of the deviations (Occlusal, Axial and Cervical) and selected focussed areas were then quantitatively measured using software (GOM Inspect software, Germany). A novel methodology was also explored to digitally align (Rhino software, V5, USA) the micro-CT scans with the master model to investigate internal fit. Fifty digital cross sections of the aligned scans were created. Point-to-point distances were measured at 5 levels at each cross section. The five levels were: Vertical Marginal Fit (VF), Absolute Marginal Fit (AM), Axio-margin Fit (AMF), Axial Fit (AF) and Occlusal Fit (OF). Results: The results of the volume measurement were summarised as: VM-CoCrMo (62.8mm3 ) > VZax3 (59.4mm3 ) > VCAD (57mm3 ) > VZax4 (56.1mm3 ) > VLS (52.5mm3 ) and were all significantly different (p presented as areas with different colour. No significant differences were observed at the internal aspect of the cervical aspect between all groups of copings. Significant differences (p< M-CoCrMo Internal Occlusal, Internal Axial and External Axial 2 ZAx3 > ZAx4 External Occlusal, External Cervical 3 ZAx3 < ZAx4 Internal Occlusal 4 M-CoCrMo > ZAx4 Internal Occlusal and Internal Axial The mean values of AMF and AF were significantly (p M-CoCrMo and CAD > ZAx4. Only VF of M-CoCrMo was comparable with the CAD Internal Fit. All VF and AM values were within the clinically acceptable fit (120µm). Conclusion: The investigated CAM methods reproduced the CAD accurately at the internal cervical aspect of the copings. However, localised deviations at axial and occlusal aspects of the copings may suggest the need for modifications in these areas prior to fitting and veneering with porcelain. The CAM groups evaluated also showed different levels of Internal Fit thus rejecting the null hypotheses. The novel non-destructive methodologies for CAD/CAM accuracy and internal fit testing presented in this thesis may be a useful evaluation tool for similar applications.