301 resultados para Cytidine Diphosphate Diglycerides


Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA fragments with stretches of cytosine residues can fold into four-stranded structures in which two parallel duplexes, held together by hemiprotonated cytosine.cytosine+ (C.C+) base pairs, intercalate into each other with opposite polarity. The structural details of this intercalated DNA quadruplex have been assessed by solution NMR and single crystal x-ray diffraction studies of cytosine-rich sequences, including those present in metazoan telomeres. A conserved feature of these structures is the absence of stabilizing stacking interactions between the aromatic ring systems of adjacent C.C+ base pairs from intercalated duplexes. Effective stacking involves only the exocyclic keto groups and amino groups of the cytidine bases. The apparent absence of stability provided by stacking interactions between the bases in this intercalated DNA has prompted us to examine the available structures in detail, in particular with regard to unusual features that could compensate for the lack of base stacking. In addition to base-on-deoxyribose stacking and intra-cytidine C-H...O hydrogen bonds, this analysis reveals the presence of a hitherto unobserved, systematic intermolecular C-H...O hydrogen bonding network between the deoxyribose sugar moieties of antiparallel backbones in the four-stranded molecule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, we established that satellite III (TGGAA)n tandem repeats, which occur at the centromeres of human chromosomes, pair with themselves to form an unusual "self-complementary" antiparallel duplex containing (GGA)2 motifs in which two unpaired guanines from opposite strands intercalate between sheared G.A base pairs. In separate studies, we have also established that the GCA triplet does not form bimolecular (GCA)2 motifs but instead promotes the formation of hairpins containing a GCA-turn motif in which the loop contains a single cytidine closed by a sheared G.A pair. Since TGCAA is the most frequent variant of TGGAA found in satellite III repeats, we reasoned that the potential of this variant to form GCA-turn miniloop fold-back structures might be an important factor in modulating the local structure in natural (TGGAA)n repeats. We report here the NMR-derived solution structure of the heptadecadeoxynucleotide (G)TGGAATGCAATGGAA(C) in which a central TGCAA pentamer is flanked by two TGGAA pentamers. This 17-mer forms a rather unusual and very stable hairpin structure containing eight base pairs in the stem, only four of which are Watson-Crick pairs, and a loop consisting of a single cytidine residue. The stem contains a (GGA)2 motif with intercalative 14G/4G stacking between two sheared G.A base pairs; the loop end of the stem consists of a sheared 8G.10A closing pair with the cytosine base of the 9C loop stacked on 8G. The remarkable stability of this unusual hairpin structure (Tm = 63 degrees C) suggests that it probably plays an important role in modulating the folding of satellite III (TGGAA)n repeats at the centromere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structures of the catalytic fragment of chicken poly(ADP-ribose) polymerase [NAD+ ADP-ribosyltransferase; NAD+:poly(adenosine-diphosphate-D-ribosyl)-acceptor ADP-D-ribosyltransferase, EC 2.4.2.30] with and without a nicotinamide-analogue inhibitor have been elucidated. Because this enzyme is involved in the regulation of DNA repair, its inhibitors are of interest for cancer therapy. The inhibitor shows the nicotinamide site and also suggests the adenosine site. The enzyme is structurally related to bacterial ADP-ribosylating toxins but contains an additional alpha-helical domain that is suggested to relay the activation signal issued on binding to damaged DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RNA editing in the nucleus of higher eukaryotes results in subtle changes to the RNA sequence, with the ability to effect dramatic changes in biological function. The first example to be described and among the best characterized, is the cytidine-to-uridine editing of apolipoprotein B (apo-B) RNA. The editing of apo-B RNA is mediated by a novel cytidine deaminase, apobec-1, which has acquired the ability to bind RNA. The stop translation codon generated by the editing of apo-B RNA truncates the full-length apo-B100 to form apo-B48. The recent observations of tumor formation in Apobec-1 transgenic animals, together with the fact that Apobec-1 is expressed in numerous tissues lacking apo-B, raises the issue of whether this enzyme is essential for a variety of posttranscriptional editing events. To directly test this, mice were created with a null mutation in Apobec-1 using homologous recombination in embryonic stem cells. Mice, homozygous for this mutation, were viable and made apo-B100 but not apo-B48. The null animals were fertile, and a variety of histological, behavioral, and morphological analyses revealed no phenotype other than abnormalities in lipoprotein metabolism, which included an increased low density lipoprotein fraction and a reduction in high density lipoprotein cholesterol. These studies demonstrate that neither apobec-1 nor apo-B48 is essential for viability and suggest that the major role of apobec-1 may be confined to the modulation of lipid transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclic terpenes and terpenoids are found throughout nature. They comprise an especially important class of compounds from plants that mediate plant- environment interactions, and they serve as pharmaceutical agents with antimicrobial and anti-tumor activities. Molecular comparisons of several terpene cyclases, the key enzymes responsible for the multistep cyclization of C10, C15, and C20 allylic diphosphate substrates, have revealed a striking level of sequence similarity and conservation of exon position and size within the genes. Functional domains responsible for a terminal enzymatic step were identified by swapping regions approximating exons between a Nicotiana tabacum 5-epi-aristolochene synthase (TEAS) gene and a Hyoscyamus muticus vetispiradiene synthase (HVS) gene and by characterization of the resulting chimeric enzymes expressed in bacteria. While exon 4 of the TEAS gene conferred specificity for the predominant reaction products of the tobacco enzyme, exon 6 of the HVS gene conferred specificity for the predominant reaction products of the Hyoscyamus enzyme. Combining these two functional domains of the TEAS and HVS genes resulted in a novel enzyme capable of synthesizing reaction products reflective of both parent enzymes. The relative ratio of the TEAS and HVS reaction products was also influenced by the source of exon 5 present in the new chimeric enzymes. The association of catalytic activities with conserved but separate exonic domains suggests a general means for generating additional novel terpene cyclases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A characteristic feature of all myosins is the presence of two sequences which despite considerable variations in length and composition can be aligned with loops 1 (residues 204-216) and 2 (residues 627-646) in the chicken myosin-head heavy chain sequence. Recently, an intriguing hypothesis has been put forth suggesting that diverse performances of myosin motors are achieved through variations in the sequences of loops 1 and 2 [Spudich, J. (1994) Nature (London) 372, 515-518]. Here, we report on the study of the effects of tryptic digestion of these loops on the motor and enzymatic functions of myosin. Tryptic digestions of myosin, which produced heavy meromyosin (HMM) with different percentages of molecules cleaved at both loop 1 and loop 2, resulted in the consistent decrease in the sliding velocity of actin filaments over HMM in the in vitro motility assays, did not affect the Vmax, and increased the Km values for actin-activated ATPase of HMM. Selective cleavage of loop 2 on HMM decreased its affinity for actin but did not change the sliding velocity of actin in the in vitro motility assays. The cleavage of loop 1 and HMM decreased the mean sliding velocity of actin in such assays by almost 50% but did not alter its affinity for HMM. To test for a possible kinetic determinant of the change in motility, 1-N6-ethenoadenosine diphosphate (epsilon-ADP) release from cleaved and uncleaved myosin subfragment 1 (S1) was examined. Tryptic digestion of loop 1 slightly accelerated the release of epsilon-ADP from S1 but did not affect the rate of epsilon-ADP release from acto-S1 complex. Overall, the results of this work support the hypothesis that loop 1 can modulate the motor function of myosin and suggest that such modulation involves a mechanism other than regulation of ADP release from myosin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The modulation of a family of cloned neuronal calcium channels by stimulation of a coexpressed mu opioid receptor was studied by transient expression in Xenopus oocytes. Activation of the morphine receptor with the synthetic enkephalin [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO) resulted in a rapid inhibition of alpha1A (by approximately 20%) and alpha1B (by approximately 55%) currents while alpha1C and alpha1E currents were not significantly affected. The opioid-induced effects on alpha1A and alpha1B currents were blocked by pertussis toxin and the GTP analogue guanosine 5'-[beta-thio]diphosphate. Similar to modulation of native calcium currents, DAMGO induced a slowing of the activation kinetics and exhibited a voltage-dependent inhibition that was partially relieved by application of strong depolarizing pulses. alpha1A currents were still inhibited in the absence of coexpressed Ca channel alpha2 and beta subunits, suggesting that the response is mediated by the alpha1 subunit. Furthermore, the sensitivity of alpha1A currents to DAMGO-induced inhibition was increased approximately 3-fold in the absence of a beta subunit. Overall, the results show that the alpha1A (P/Q type) and the alpha1B (N type) calcium channels are selectively modulated by a GTP-binding protein (G protein). The results raise the possibility of competitive interactions between beta subunit and G protein binding to the alpha1 subunit, shifting gating in opposite directions. At presynaptic terminals, the G protein-dependent inhibition may result in decreased synaptic transmission and play a key role in the analgesic effect of opioids and morphine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Of all humans thus far studied, Sherpas are considered by many high-altitude biomedical scientists as most exquisitely adapted for life under continuous hypobaric hypoxia. However, little is known about how the heart is protected in hypoxia. Hypoxia defense mechanisms in the Sherpa heart were explored by in vivo, noninvasive 31P magnetic resonance spectroscopy. Six Sherpas were examined under two experimental conditions [normoxic (21% FiO2) and hypoxic (11% FiO2) and in two adaptational states--the acclimated state (on arrival at low-altitude study sites) and the deacclimating state (4 weeks of ongoing exposure to low altitude). Four lowland subjects were used for comparison. We found that the concentration ratios of phosphocreatine (PCr)/adenosine triphosphate (ATP) were maintained at steady-state normoxic values (0.96, SEM = 0.22) that were about half those found in normoxic lowlanders (1.76, SEM = 0.03) monitored the same way at the same time. These differences in heart energetic status between Sherpas and lowlanders compared under normoxic conditions remained highly significant (P < 0.02) even after 4 weeks of deacclimation at low altitudes. In Sherpas under acute hypoxia, the heart rate increased by 20 beats per min from resting values of about 70 beats per min, and the percent saturation of hemoglobin decreased to about 75%. However, these perturbations did not alter the PCr/ATP concentration ratios, which remained at about 50% of the values expected in healthy lowlanders. Because the creatine phosphokinase reaction functions close to equilibrium, these steady-state PCr/ATP ratios presumably coincided with about 3-fold higher free adenosine diphosphate (ADP) concentrations. Higher ADP concentrations (i.e., lower [PCr]/[ATP] ratios) were interpreted to correlate with the Km values for ADP-requiring kinases of glycolysis and to reflect elevated carbohydrate contributions to heart energy needs. This metabolic organization is postulated as advantageous in hypobaria because the ATP yield per O2 molecule is 25-60% higher with glucose than with free fatty acids (the usual fuels utilized in the human heart in postfasting conditions).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to identify guanine nucleotide-binding proteins (G proteins) involved in the agonist- and guanosine 5'-[gamma-thio]triphosphate (GTP[gamma-S])-induced increase in the Ca2+ sensitivity of 20-kDa myosin light chain (MLC20) phosphorylation and contraction in smooth muscle. A constitutively active, recombinant val14p21rhoA.GTP expressed in the baculovirus/Sf9 system, but not the protein expressed without posttranslational modification in Escherichia coli, induced at constant Ca2+ (pCa 6.4) a slow contraction associated with increased MLC20 phosphorylation from 19.8% to 29.5% (P < 0.05) in smooth muscle permeabilized with beta-esein. The effect of val14p21rhoA.GTP was inhibited by ADP-ribosylation of the protein and was absent in smooth muscle extensively permeabilized with Triton X-100. ADP-ribosylation of endogenous p21rho with epidermal cell differentiation inhibitor (EDIN) inhibited Ca2+ sensitization induced by GTP [in rabbit mesenteric artery (RMA) and rabbit ileum smooth muscles], by carbachol (in rabbit ileum), and by endothelin (in RMA), but not by phenylephrine (in RMA), and only slowed the rate without reducing the amplitude of contractions induced in RMA by 1 microM GTP[gamma-S] at constant Ca2+ concentrations. AlF(4-)-induced Ca2+ sensitization was inhibited by both guanosine 5'-[beta-thio]diphosphate (GDP[beta-S]) and by EDIN. EDIN also inhibited, to a lesser extent, contractions induced by Ca2+ alone (pCa 6.4) in both RMA and rabbit ileum. ADP-ribosylation of trimeric G proteins with pertussis toxin did not inhibit Ca2+ sensitization. We conclude that p21rho may play a role in physiological Ca2+ sensitization as a cofactor with other messengers, rather than as a sole direct inhibitor of smooth muscle MLC20 phosphatase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phospholipase D (PLD) associated with the rat kidney membrane was activated by guanine 5'-[gamma-thio]triphosphate and a cytosol fraction that contained ADP-ribosylation factor. When assayed by measuring the phosphatidyl transfer reaction to ethanol with exogenously added radioactive phosphatidylcholine as substrate, the PLD required a high concentration (1.6 M) of ammonium sulfate to exhibit high enzymatic activity. Other salts examined were far less effective or practically inactive, and this dramatic action of ammonium sulfate is not simply due to such high ionic strength. Addition of ATP but not of nonhydrolyzable ATP analogue adenosine 5'-[beta, gamma-imido]diphosphate further enhanced the PLD activation approximately equal to 2- to 3-fold. This enhancement by ATP needed cytosol, implying a role of protein phosphorylation. A survey of PLD activity in rat tissues revealed that, unlike in previous observations reported thus far, PLD was most abundant in membrane fractions of kidney, spleen, and liver in this order, and the enzymatic activity in brain and lung was low.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some mitochondrial tRNA genes of land snails show mismatches in the acceptor stems predicted from their gene sequences. The majority of these mismatches fall in regions where the tRNA genes overlap with adjacent downstream genes. We have synthesized cDNA from four circularized tRNAs and determined the sequences of the 5' and 3' parts of their acceptor stems. Three of the four tRNAs differ from their corresponding genes at a total of 13 positions, which all fall in the 3' part of the acceptor stems as well as the discriminator bases. The editing events detected involve changes from cytidine, thymidine, and guanosine to adenosine residues, which generally restore base-pairing in the stems. However, in one case an A-A mismatch is created from an A-C mismatch. It is suggested that this form of RNA editing may involve polyadenylylation of the maturing tRNAs as an intermediate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apolipoprotein (apo-) B mRNA editing is the deamination of cytidine that creates a new termination codon and produces a truncated version of apo-B (apo-B48). The cytidine deaminase catalytic subunit [apo-B mRNA-editing enzyme catalytic polypeptide 1 (APOBEC-1)] of the multiprotein editing complex has been identified. We generated transgenic rabbits and mice expressing rabbit APOBEC-1 in their livers to determine whether hepatic expression would lower low density lipoprotein cholesterol concentrations. The apo-B mRNA from the livers of the transgenic mice and rabbit was extensively edited, and the transgenic animals had reduced concentrations of apo-B100 and low density lipoproteins compared with control animals. Unexpectedly, all of the transgenic mice and a transgenic rabbit had liver dysplasia, and many transgenic mice developed hepatocellular carcinomas. Many of the mouse livers were hyperplastic and filled with lipid. Other hepatic mRNAs with sequence motifs similar to apo-B mRNA were examined for this type of editing (i.e., cytidine deamination). One of these, tyrosine kinase, was edited in livers of transgenic mice but not of controls. This result demonstrates that other mRNAs can be edited by the overexpressed editing enzyme and suggests that aberrant editing of hepatic mRNAs involved in cell growth and regulation is the cause of the tumorigenesis. Finally, these findings compromise the potential use of APOBEC-1 for gene therapy to lower plasma levels of low density lipoproteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(ADP-ribose) polymerase [PARP; NAD+ ADP-ribosyltransferase; NAD+:poly(adenosine-diphosphate-D-ribosyl)-acceptor ADP-D-ribosyltransferase, EC 2.4.2.30] is a zinc-dependent eukaryotic DNA-binding protein that specifically recognizes DNA strand breaks produced by various genotoxic agents. To study the biological function of this enzyme, we have established stable HeLa cell lines that constitutively produce the 46-kDa DNA-binding domain of human PARP (PARP-DBD), leading to the trans-dominant inhibition of resident PARP activity. As a control, a cell line was constructed, producing a point-mutated version of the DBD, which has no affinity for DNA in vitro. Expression of the PARP-DBD had only a slight effect on undamaged cells but had drastic consequences for cells treated with genotoxic agents. Exposure of cell lines expressing the wild-type (wt) or the mutated PARP-DBD, with low doses of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) resulted in an increase in their doubling time, a G2 + M accumulation, and a marked reduction in cell survival. However, UVC irradiation had no preferential effect on the cell growth or viability of cell lines expressing the PARP-DBD. These PARP-DBD-expressing cells treated with MNNG presented the characteristic nucleosomal DNA ladder, one of the hallmarks of cell death by apoptosis. Moreover, these cells exhibited chromosomal instability as demonstrated by higher frequencies of both spontaneous and MNNG-induced sister chromatid exchanges. Surprisingly, the line producing the mutated DBD had the same behavior as those producing the wt DBD, indicating that the mechanism of action of the dominant-negative mutant involves more than its DNA-binding function. Altogether, these results strongly suggest that PARP is an element of the G2 checkpoint in mammalian cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein farnesyltransferase catalyzes the alkylation of cysteine in C-terminal CaaX sequences of a variety of proteins, including Ras, nuclear lamins, large G proteins, and phosphodiesterases, by farnesyl diphosphate (FPP). These modifications enhance the ability of the proteins to associate with membranes and are essential for their respective functions. The enzyme-catalyzed reaction was studied by using a series of substrate analogs for FPP to distinguish between electrophilic and nucleophilic mechanisms for prenyl transfer. FPP analogs containing hydrogen, fluoromethyl, and trifluoromethyl substituents in place of the methyl at carbon 3 were evaluated as alternative substrates for alkylation of the sulfhydryl moiety in the peptide dansyl-GCVIA. The analogs were alternative substrates for the prenylation reaction and were competitive inhibitors against FPP. A comparison of kcat for FPP and the analogs with ksolv, the rate constants for solvolysis of related p-methoxybenzenesulfonate derivatives, indicated that protein prenylation occurred by an electrophilic mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a general mass spectrometric approach for the rapid identification and characterization of proteins isolated by preparative two-dimensional polyacrylamide gel electrophoresis. This method possesses the inherent power to detect and structurally characterize covalent modifications. Absolute sensitivities of matrix-assisted laser desorption ionization and high-energy collision-induced dissociation tandem mass spectrometry are exploited to determine the mass and sequence of subpicomole sample quantities of tryptic peptides. These data permit mass matching and sequence homology searching of computerized peptide mass and protein sequence data bases for known proteins and design of oligonucleotide probes for cloning unknown proteins. We have identified 11 proteins in lysates of human A375 melanoma cells, including: alpha-enolase, cytokeratin, stathmin, protein disulfide isomerase, tropomyosin, Cu/Zn superoxide dismutase, nucleoside diphosphate kinase A, galaptin, and triosephosphate isomerase. We have characterized several posttranslational modifications and chemical modifications that may result from electrophoresis or subsequent sample processing steps. Detection of comigrating and covalently modified proteins illustrates the necessity of peptide sequencing and the advantages of tandem mass spectrometry to reliably and unambiguously establish the identity of each protein. This technology paves the way for studies of cell-type dependent gene expression and studies of large suites of cellular proteins with unprecedented speed and rigor to provide information complementary to the ongoing Human Genome Project.