456 resultados para Cylinders.
Resumo:
Pós de titanato zirconato de chumbo (PZT) puros e dopados com bário foram obtidos pelo método de precursores poliméricos, conformados uniaxialmente, na forma de cilindros, utilizando 15 MPa, e prensados isostaticamente à 210MPa. Com o objetivo de estudar o comportamento de sinterização os compactos foram divididos em dois lotes. Sendo um sinterizado em um forno acoplado a um dilatômetro até a temperatura de 1300 °C e o outro sinterizado em forno tipo mufla, em sistema fechado, na temperatura de 1100 °C por 4 horas. Verificou-se que a adição do íon bário influencia na cinética de sinterização, na densificação final, na microestrutura e nas propriedades elétricas da cerâmica. A adição de bário aumenta a concentração da fase tetragonal no PZT, em função da substituição do chumbo por bário na rede perovskita. As amostras dopadas com concentrações maiores que 5,0 mol % em bário apresentaram segregação de PbO no contorno de grão, inibindo seu crescimento.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Thermal spray WC-based coatings are widely used in the aircraft industry mainly for their resistance to wear, reworking and rebuilding operations and repair of worn components on landing gear, hydraulic cylinders, actuators, propeller hub assemblies, gas turbine engines, and so on. The aircraft industry is also trying to use thermal spray technology to replace electroplating coatings such as hard chromium. In the present work, WC-Co coatings were built up on an AA 7050 aluminum alloy using high velocity oxygen fuel (HVOF) technology and a liquid nitrogen cooling prototype system. The influence of the spray parameters (standard conditions, W19S, increasing the oxygen flux, W19H, and also increasing the carrier gas flux, W19F) on corrosion, friction, and abrasive wear resistance were also studied. The coatings were characterized using optical (OM) and scanning electron (SEM) microscopy, and X-ray diffraction (XRD). The friction and abrasive wear resistance of the coatings were studied using Rubber Wheel and Ball on Disk tests. The electrochemical studies were conducted using open-circuit potential (E(oc)) measurements and electrochemical impedance spectroscopy (EIS). Differences among coated samples were mainly related to the variation of the thermal spray parameters used during the spray process. No significant differences were observed in the wear resistance for the coatings studied, and all of them showed a wear rate around 10 times lower than that of the aluminum alloy. The results of mass loss and wear rate were interpreted considering different mechanisms. Comparing the different spray parameters, the oxygen flux (higher flame temperature) produced the sample which showed the highest corrosion resistance in aerated and unstirred 3.5% NaCl solution. Aluminum ions were detected on the surface almost immediately after the immersion of samples W19S and W19F in chloride solution, showing that the electrolyte reached the substrate and galvanic corrosion probably occurred. For sample W19H, aluminum ions were not detected even after 120 min of immersion in NaCl solution. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Foi estudada a anatomia dos escapos de 17 espécies de Paepalanthus subgênero Platycaulon, sendo 10 da sect. Divisi e sete da sect. Conferti. O trabalho foi realizado para caracterizar anatomicamente os escapos. como contribuição para o entendimento do grupo, uma vez que. morfologicamente, esse é o caráter laxonômico mais importante. Procurou-se, também, confirmar ou não o reconhecimento das duas seções dentro do subgênero. Para os estudos anatômicos utilizou-se material proveniente do Brasil, obtido de exsicatas de diferentes herbários e/ou coletado na Serra do Cipó, MG. Neste trabalho observou-se que Paepalanthus subg. Platycaulon é caracterizado morfologicamente por apresentar escapos pluricapitulados no ápice. Anatomicamente, as espécies estudadas da sect. Divisi apresentam escapos com vários cilindros vasculares, na região mediana e, ainda apresentam, em Paepalanthus vellozioides e P. spixianus, feixes vasculares corticais, características únicas na família. Diferentemente, as espécies avaliadas da sect. Conferti apresentam escapos com cilindro vascular único na região mediana, padrão análogo ao das demais Eriocaulaccae, e ainda apresentam, em Paepalanthus itatiaiensis, P. planifolius e P. paulensis, feixes vasculares medulares, que até então não haviam sido referidos para a família.
Resumo:
We report the preparation of direct hexagonal liquid crystals, constituted of oil-swollen cylinders arranged on a triangular lattice in water. The volume ratio of oil over water, rho, can be as large as 3.8. From the lattice parameter measured by small-angle X-ray scattering, we show that all the oil is indeed incorporated into the cylinders, thus allowing the diameter of the cylinders to be controlled over one decade range, provided that the ionic strength of the aqueous medium and rho are varied concomitantly. These hexagonal swollen liquid crystals (SLCs) have been first reported with sodium dodecyl sulfate as anionic surfactant, cyclohexane as solvent, 1-pentanol as co-surfactant, and sodium chloride as salt (Ramos, L.; Fabre, P. Langmuir 1997, 13, 13). The stability of these liquid crystals is investigated when the pH of the aqueous medium or the chemical nature of the components (salt and surfactant) is changed. We demonstrate that the range of stability is quite extended, rendering swollen hexagonal phases potentially useful for the fabrication of nanomaterials. As illustrations, we finally show that gelation of inorganic particles in the continuous aqueous medium of a SLC and polymerization within the oil-swollen cylinders of a SLC can be conducted without disrupting the hexagonal order of the system.
Resumo:
Specific heat, thermal conductivity, thermal diffusivity, and density of coffee extract were experimentally determined in the range of 0.49 to 0.90 (wet basis) water content and at temperatures varying from 30 to 82 degreesC. Thermal conductivity and specific heat were measured by means of the same apparatus- a cell constituted of two concentric cylinders - operating at steady and unsteady state, respectively. The thermal diffusivity was measured by the well-known Dickerson's method and density was determined by picnometry. The results obtained were used to derive mathematical models for predicting these properties as a function of concentration and temperature.
Resumo:
Laminar axial flow of a pseudoplastic fluid food (soursop, juice) in annular ducts has been experimentally investigated. In the first part of the manuscript, the rheological behavior of soursop juice, being essential for the annular flow analysis, was completely determined from 9.3 to 49.4 degrees Brix and temperatures from 0.4 degrees C to 68.8 degrees C, using a rotational rheometer equipped with coaxial cylinders. In order to test the adequacy of the rheology results, pressure loss data in the laminar pipe flow were collected and then experimental and theoretical friction factors were compared, showing excellent agreement, which indicated the reliability of the Power-Law model for describing the soursop juices. In the second part, pressure loss in annular regions was measured and used to estimate friction factors, which were then compared to those resulted from analytical and semi-analytical equations. The principal contributions of this article are to provide a review on the determination of friction factors-Reynolds number of pseudoplastic fluids in annuli, and also supply extensive new experimental data on the rheological properties and pressure loss of an important shear-thinning fluid food, which is of particular interest for the food engineering process design. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We report the synthesis of zirconia microneedles by the direct nucleation of particles inside a hexagonal swollen liquid crystal (SLC) (cell parameter a = 27 nm) prepared by mixing with the proper ratio, an aqueous solution of sulfated zirconium colloids, a cationic surfactant (cetylpyridinium chloride), cychlohexane as swelling agent with an oil over water ratio of 2.5 (vol.), and 1-pentanol as cosurfactant. After a slow crystallogenesis that can be enhanced by an initial induction step under moderate temperature, particles in the centimeter range can be obtained, with a very high shape ratio (over 100). These particles are made of crystalline octahydrate zirconium oxychloride containing pores of 20 nm diameter, aligned along the main axis of the liquid crystal, as the fingerprint of the oil cylinders present in the hexagonal phase. The morphology of these particles confirms that the shaping mechanism is based on true liquid crystal templating (TLCT). Further thermal treatment of these particles, after extraction from the SLC, leads to the crystallization of zirconia with the same needlelike morphology as the zirconium oxychloride.
Resumo:
Pressure drop and minimum fluidization velocity were experimentally studied in a vibro-fluidized bed of inert particles subjected to different vibration intensities during drying of guava pulp. Maltodextrin was added to the pulp in order to prevent stickiness between particles and the consequent bed collapse. Pulps were initially concentrated, resulting in pastes with different soluble solids content, and a constant fraction of maltodextrin was guaranteed in the final pulp samples. The pulp rheological behavior as affected by temperature and total soluble solids content, including maltodextrin, was evaluated and the effect of pulp apparent viscosity on pressure drop and minimum vibro-fluidization velocity were investigated. Two types of inert particles -3.6 mm glass beads and 3 mm Teflon cylinders were tested and, due to lower pressure drop presented by Teflon cylinders during operation of the dry vibro-fluidized bed, these particles were adopted for pulp drying process. Increasing pulp apparent viscosity caused a considerable increase in the vibro-fluidized bed pressure drop during pulp drying and, as a consequence resulted in a larger value of minimum vibro-fluidization velocity. on the other hand, the negative effect of increasing apparent viscosity could be attenuated by increasing the fluidized bed vibration intensity, which could prevent stickiness between particles. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Pressure drop and minimum fluidization velocity were experimentally studied in a vibro-fluidized bed of inert particles subjected to different vibration intensities during drying of soursop pulp. Maltodextrin was added to the pulp in order to prevent stickiness between particles and the consequent bed collapse. Pulps were initially concentrated, resulting in pastes with different soluble solids content, and a constant fraction of maltodextrin was guaranteed in the final pulp samples. The pulp theological behavior as affected by temperature and total soluble solids content, including maltodextrin, was evaluated and the effect of pulp apparent viscosity on pressure drop and minimum vibro-fluidization velocity were investigated. Two types of inert particles -3.6 mm glass beads and 3 mm Teflon cylinders (length and diameter) - were tested and, due to lower pressure drop presented by Teflon cylinders during operation of the dry vibro-fluidized bed, these particles were adopted for pulp drying process. Increasing pulp apparent viscosity caused a considerable increase in the vibro-fluidized bed pressure drop during pulp drying and, as a consequence resulted in a larger value of minimum vibro-fluidization velocity. on the other hand, the negative effect of increasing apparent viscosity could be attenuated by increasing the fluidized bed vibration intensity, which could prevent stickiness between particles. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Synthesis and self-assembly of nanomaterials can be controlled by the properties of soft matter. on one hand, dedicated nanoreactors such as reverse microemulsions or miniemulsions can be designed. on the other hand, direct shape control can be provided by the topology of liquid crystals that confine the reacting medium within a specific geometry. In the first case, the preparation of micro- or miniemulsions generally requires energetic mechanical stirring. The second approach uses thermodynamically stable systems, but it remains usually limited to binary (water + surfactant) systems. We report the preparation of different families of materials in highly ordered quaternary mediums that exhibit a liquid crystal structure with a high cell parameter. They were prepared with the proper ratios of salted water, nonpolar solvent, surfactant. and cosurfactants that form spontaneously swollen hexagonal phases. These swollen liquid crystals can be prepared from all classes of surfactants (cationic, anionic, and nonionic). They contain a regular network of parallel cylinders, whose diameters can be swollen with a nonpolar solvent, that are regularly spaced in a continuous aqueous salt solution. We demonstrate in the present report that both aqueous and organic phases can be used as nanoreactors for the preparation of materials. This property is illustrated by various examples such as the synthesis of platinum nanorods prepared in the aqueous phase or zirconia needles or the photo- or gamma-ray-induced polymerization of polydiacetylene in the organic phase. In all cases, materials can be easily extracted and their final shapes are directed by the structure-directing effect imposed by the liquid crystal.
Resumo:
Rheological studies were carried out in the fermentation broth of a polysaccharide-producing microorganism free of soil. This microorganism was designated 4B. The bacteria 4B was inoculated in the fermentation broth, which consisted of a carbon source and mineral salts, and it was incubated in a rotating agitator at 30 degreesC for 72 h at 210 rpm. A rheometer of concentric cylinders equipped with a thermostatic bath was used and the readings were taken at 25 degreesC. A study was made of the influence of the fermentation time and the readings were made after 24, 48 and 72 h of incubation, using, separately, sucrose and glucose as carbon sources. The influence of the salt concentrations was determined in each carbon source; the salts used were NaCl, KCl and CaCl2 in the concentrations of 0.4%, 1.0%, 2.0% and 3.0%. It was observed that the fermentation broth behaves as a non-Newtonian fluid and it presents pseudoplastic behaviour. Calculations were made of the flow behaviour index (n) and the consistency index (k) of the samples after 24, 48 and 72 h of fermentation, and it was observed that the 72 h sample presented higher k and consequently higher apparent viscosity. of the carbon sources used, the sucrose presented higher viscous broths after 24 and 48 h, and the glucose after 72 h of fermentation. With relation to the effect of the addition of salts, the CaCl2 presented a higher influence on the viscosity of the fermentation broths. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Introduction: The evolution of light curing units can be noticed by the different systems recently introduced. The technology of LED units promises longer lifetime, without heating and with production of specific light for activation of camphorquinone. However, further studies are still required to check the real curing effectiveness of these units. Purpose: This study evaluated the microhardness of 4 shades (B-0.5, B-1, B-2 and B-3) of composite resin Filtek Z-250 (3M ESPE) after light curing with 4 light sources, being one halogen (Ultralux - Dabi Atlante) and three LED (Ultraled - Dabi Atlante, Ultrablue - DMC and Elipar Freelight - 3M ESPE). Methods: 192 specimens were distributed into 16 groups, and materials were inserted in a single increment in cylindrical templates measuring 4mm x 4mm and light cured as recommended by the manufacturer. Then, they were submitted to microhardness test on the top and bottom aspects of the cylinders. Results: The hardness values achieved were submitted to analysis of variance and to Tukey test at 5% confidence level. It was observed that microhardness of specimens varied according to the shade of the material and light sources employed. The LED appliance emitting greater light intensity provided the highest hardness values with shade B-0.5, allowing the best curing. On the other hand, appliances with low light intensity were the least effective. It was also observed that the bottom of specimens was more sensitive to changes in shade. Conclusion: Light intensity of LED light curing units is fundamental for their good functioning, especially when applied in resins with darker shades.
Resumo:
Purpose: This study assessed the shear bond strength of 4 hard chairside reline resins (Kooliner, Tokuso Rebase Fast, Duraliner II, Ufi Gel Hard) to a rapid polymerizing denture base resin (QC-20) processed using 2 polymerization cycles (A or B), before and after thermal cycling. Materials and Methods: Cylinders (3.5 mm x 5.0 mm) of the reline resins were bonded to cylinders of QC-20 polymerized using cycle A (boiling water-20 minutes) or B (boiling water; remove heat-20 minutes; boiling water-20 minutes). For each reline resin/polymerization cycle combination, 10 specimens (groups CAt e CBt) were thermally cycled (5 and 55°C; dwell time 30 seconds; 2,000 cycles); the other 10 were tested without thermal cycling (groups CAwt ad CBwt). Shear bond tests (0.5 mm/min) were performed on the specimens and the failure mode was assessed. Data were analyzed by 3-way ANOVA and Newman-Keuls post-hoc test (α=.05). Results: QC-20 resin demonstrated the lowest bond strengths among the reline materials (P<.05) and mainly failed cohesively. Overall, the bond strength of the hard chairside reline resins were similar (10.09±1.40 to 15.17±1.73 MPa) and most of the failures were adhesive/cohesive (mixed mode). However, Ufi Gel Hard bonded to QC-20 polymerized using cycle A and not thermally cycled showed the highest bond strength (P<.001). When Tokuso Rebase Fast and Duraliner II were bonded to QC-20 resin polymerized using cycle A, the bond strength was increased (P=.043) after thermal cycling. Conclusions: QC-20 displayed the lowest bond strength values in all groups. In general, the bond strengths of the hard chairside reline resins were comparable and not affected by polymerization cycle of QC-20 resin and thermal cycling.