971 resultados para Cyanobacteria -- Biodegradation
Resumo:
The University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD, http://umbbd.ahc.umn.edu/) provides curated information on microbial catabolic enzymes and their organization into metabolic pathways. Currently, it contains information on over 400 enzymes. In the last year the enzyme page was enhanced to contain more internal and external links; it also displays the different metabolic pathways in which each enzyme participates. In collaboration with the Nomenclature Commission of the International Union of Biochemistry and Molecular Biology, 35 UM-BBD enzymes were assigned complete EC codes during 2000. Bacterial oxygenases are heavily represented in the UM-BBD; they are known to have broad substrate specificity. A compilation of known reactions of naphthalene and toluene dioxygenases were recently added to the UM-BBD; 73 and 108 were listed respectively. In 2000 the UM-BBD is mirrored by two prestigious groups: the European Bioinformatics Institute and KEGG (the Kyoto Encyclopedia of Genes and Genomes). Collaborations with other groups are being developed. The increased emphasis on UM-BBD enzymes is important for predicting novel metabolic pathways that might exist in nature or could be engineered. It also is important for current efforts in microbial genome annotation.
Resumo:
The psbA2 gene of a unicellular cyanobacterium, Microcystis aeruginosa K-81, encodes a D1 protein homolog in the reaction center of photosynthetic Photosystem II. The expression of the psbA2 transcript has been shown to be light-dependent as assessed under light and dark (12/12 h) cycling conditions. We aligned the 5′-untranslated leader regions (UTRs) of psbAs from different photosynthetic organisms and identified a conserved sequence, UAAAUAAA or the ‘AU-box’, just upstream of the SD sequences. To clarify the role of 5′-upstream cis-elements containing the AU-box for light-dependent expression of psbA2, a series of deletion and point mutations in the region were introduced into the genome of heterologous cyanobacterium Synechococcus sp. strain PCC 7942, and psbA2 expression was examined. A clear pattern of light-dependent expression was observed in recombinant cyanobacteria carrying the K-81 psbA2 –38/+36 region (which includes the minimal promoter element and a light-dependent cis-element with the AU-box), +1 indicating the transcription start site. A constitutive pattern of expression, in which the transcripts remained almost stable under dark conditions, was obtained in cells harboring the –38/+14 region (the minimal element), indicating that the +14/+36 region with the AU-box is important for the observed light-dependent expression. Point mutations analyses within the AU-box also revealed that changes in number, direction and identity (as assayed by adenine/uridine nucleotide substitutions) influenced the light-dependent pattern of expression. The level of psbA2 transcripts increased markedly in CG- or deletion-box mutants in the dark, strongly indicating that the AU- (AT-) box acts as a negative cis-element. Furthermore, characterization of transcript accumulation in cells treated with rifampicin suggests that psbA2 5′-mRNA is unstable in the dark, supporting the view that the light-dependent expression is controlled at the post-transcriptional level. We discuss various mechanisms that may lead to altered mRNA stability such as the binding of factor(s) or ribosomes to the 5′-UTR and possible roles of the AU-box motif and the SD sequence.
Resumo:
To ascertain whether the circadian oscillator in the prokaryotic cyanobacterium Synechococcus PCC 7942 regulates the timing of cell division in rapidly growing cultures, we measured the rate of cell division, DNA content, cell size, and gene expression (monitored by luminescence of the PpsbAI::luxAB reporter) in cultures that were continuously diluted to maintain an approximately equal cell density. We found that populations dividing at rates as rapid as once per 10 h manifest circadian gating of cell division, since phases in which cell division slows or stops recur with a circadian periodicity. The data clearly show that Synechococcus cells growing with doubling times that are considerably faster than once per 24 h nonetheless express robust circadian rhythms of cell division and gene expression. Apparently Synechococcus cells are able to simultaneously sustain two timing circuits that express significantly different periods.
Resumo:
Bacteria that swim without the benefit of flagella might do so by generating longitudinal or transverse surface waves. For example, swimming speeds of order 25 microns/s are expected for a spherical cell propagating longitudinal waves of 0.2 micron length, 0.02 micron amplitude, and 160 microns/s speed. This problem was solved earlier by mathematicians who were interested in the locomotion of ciliates and who considered the undulations of the envelope swept out by ciliary tips. A new solution is given for spheres propagating sinusoidal waveforms rather than Legendre polynomials. The earlier work is reviewed and possible experimental tests are suggested.
Resumo:
To modulate the expression of genes involved in nitrogen assimilation, the cyanobacterial PII-interacting protein X (PipX) interacts with the global transcriptional regulator NtcA and the signal transduction protein PII, a protein found in all three domains of life as an integrator of signals of the nitrogen and carbon balance. PipX can form alternate complexes with NtcA and PII, and these interactions are stimulated and inhibited, respectively, by 2-oxoglutarate, providing a mechanistic link between PII signaling and NtcA-regulated gene expression. Here, we demonstrate that PipX is involved in a much wider interaction network. The effect of pipX alleles on transcript levels was studied by RNA sequencing of S. elongatus strains grown in the presence of either nitrate or ammonium, followed by multivariate analyses of relevant mutant/control comparisons. As a result of this process, 222 genes were classified into six coherent groups of differentially regulated genes, two of which, containing either NtcA-activated or NtcA-repressed genes, provided further insights into the function of NtcA–PipX complexes. The remaining four groups suggest the involvement of PipX in at least three NtcA-independent regulatory pathways. Our results pave the way to uncover new regulatory interactions and mechanisms in the control of gene expression in cyanobacteria.
Resumo:
tRNAs are charged with cognate amino acids by aminoacyl-tRNA synthetases (aaRSs) and subsequently delivered to the ribosome to be used as substrates for gene translation. Whether aminoacyl-tRNAs are channeled to the ribosome by transit within translational complexes that avoid their diffusion in the cytoplasm is a matter of intense investigation in organisms of the three domains of life. In the cyanobacterium Anabaena sp. PCC 7120, the valyl-tRNA synthetase (ValRS) is anchored to thylakoid membranes by means of the CAAD domain. We have investigated whether in this organism ValRS could act as a hub for the nucleation of a translational complex by attracting other aaRSs to the membranes. Out of the 20 aaRSs, only ValRS was found to localize in thylakoid membranes whereas the other enzymes occupied the soluble portion of the cytoplasm. To investigate the basis for this asymmetric distribution of aaRSs, a global search for proteins interacting with the 20 aaRSs was conducted. The interaction between ValRS and the FoF1 ATP synthase complex here reported is of utmost interest and suggests a functional link between elements of the gene translation and energy production machineries.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
The influence of a new aeration system on the biopile performance was investigated. The purpose was to increase biodegradation efficiency by optimising airflow through the pile. During a 1-month field trial, the performance of a new system using two perforated vertical pipes with wind-driven turbines was compared with that of a standard pile configuration with two horizontal perforated pipes. Both piles were composed of a similar mix of diesel-contaminated soils, woodchips, compost and NPK fertiliser. Hydrocarbons were recovered using solvent extraction, and determined both gravimetrically and by gas chromatography. Total heterotrophs, pH and moisture content were also assessed. Air pressure measurements were made to compare the efficiency of suction in the pipes. Results at the end of the experiment showed that there was no significant difference between the two piles in the total amount of hydrocarbon biodegradation. The normalised degradation rate was, however, considerably higher in the new system than in the standard one, suggesting that the vertical venting method may have improved the efficiency of the biological reactions in the pile. The pressure measurements showed a significant improvement in the suction produced by the new aeration system. However, many factors other than the airflow (oxygen supply) may influence and limit the biodegradation rates, including moisture content, age of contaminants and the climatic conditions. Additional experiments and modelling need to be carried out to explore further the new aeration method and to develop criteria and guidelines for engineering design of optimal aeration schemes in order to achieve maximum biodegradation in biopiles. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The occurrence of the cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenayya and Subba Raju is a global water quality issue. The misidentification of C. raciborskii in the past is a major concern for water quality users, considering the reported cases of human and livestock poisonings associated with the cyanobacterium. Many of the available taxonomic descriptions for this species provide little or no detail of the morphology of early developmental phases that may assist with identification. Therefore, typifying the morphological changes throughout the entire life cycle for such a species requires urgent attention. In this study, five distinct morphological phases identified using a new culturing technique are reported for the process of akinete germination in C. raciborskii. Before the terminal emergence of three to four cell germlings through a ruptured akinete envelope (phase 3), mature akinetes (phase 1) elongated and the endospore separated from the akinete envelope (phase 2). After the association with the envelope was lost, four-cell germlings (phase 4a) matured into young trichomes of more than four cells (phase 4b). Throughout the process of germination, internal granular structures decreased in size and were irregular in shape in germlings and young trichomes. The culturing technique, which used a Sedgwick-Rafter cell, was successful in its application but was limiting in that the development of young trichomes after phase 4b could not be monitored.
Resumo:
1. Cylindrospermopsis raciborskii is a potentially toxic freshwater cyanobacterium which can produce akinetes (reproductive spores) that on germinating can contribute to future populations. To further understand factors controlling the formation of these specialised cells, the effects of diurnal temperature fluctuations (magnitude and frequency), in combination with different light intensities and phosphorus concentrations were investigated under laboratory conditions. 2. Akinete differentiation was affected by the frequency of temperature fluctuations. Maximum akinete concentrations were observed in cultures that experienced multiple diurnal temperature fluctuations. 3. Akinete concentrations increased with increasing magnitude of temperature fluctuation. A maximum akinete concentration was achieved under multiple diurnal temperature fluctuations with a magnitude of 10degreesC (25degreesC to 15degreesC). 4. A fourfold increase in light intensity (25-100 mumol m(-2) s(-1)) resulted in an approximate 14-fold increase in akinete concentration. 5. High filterable reactive phosphorus (FRP) concentrations (> 70 mug L-1) in the medium, combined with a multiple diurnal temperature fluctuation of 10degreesC, supported the development of the highest akinete concentration.
Resumo:
Degradation of a synthetic tanning agent CNSF (a condensation product of 2-naphthatenesulfonic acid (2-NSA) and formaldehyde) by four activated sludges, two previously characterised bacterial strains, Arthrobacter sp. 2AC and Comamonas sp. 4BC, and the fungus Cunninghamella polymorpha, was studied in batch culture at 25 degrees C by determining the changes in the concentrations of CNSF and its component monomers and oligomers (n2-n11). The loss of individual oligomers was correlated with the length of the NSA-CH2 chain. Approximately 25% of the total CNSF was degraded (i.e. mineralised) by the microbes contained in the four activated sludges and by the two bacterial isolates but with different lag phases and at different overall rates. The decline in CNSF concentration was due almost entirely to the biodegradation of the monomers (34.3% of CNSF) and, in particular, 2-NSA (27% of CNSF). There was no change in the n2-n 11 components. The growth of C. polymorpha, on the other hand, arose from extracellular depolymerisation of CNSF oligomers and the biodegradation of the lower molecular mass products. Between 38% and 42% of total CNSF was degraded by C. polymorpha at 25 degrees C. The order of oligomer degradation was inversely related to degree of polymerisation. Eighty percent and 90% of the n4 and n5 and 100% oligomers n6-n11 were degraded after 120 h. At a higher temperature (37 degrees C) oligomers n4-n11 were degraded completely after 120 h. A combination of biodegradation (75%) and sorption to fungal biomass (25%) accounted for the measured loss of all oligomers from the solution phase. The CNSF degradation rates and the volume of fungal biomass produced (and therefore the extent of biosorption) were dependent on the presence of a second carbon source (both optimum at glucose 5 g/l). This is the first report that identifies and distinguishes between depolymerisation, sorption and biodegradation processes in the removal of CNSF and its component oligomers. The use of combinations of the depolymerising fungus C. polymorpha, and the monomer-degrading bacteria, Arthrobacter sp. 2AC and Comamonas sp. 4BC, have potential for wastewater treatment.
Resumo:
We compared inorganic phosphate (P-i) uptake and growth kinetics of two cultures of the diazotrophic cyanobacterium Trichodesmium isolated from the North Atlantic Ocean (IMS101) and from the Great Barrier Reef, Australia (GBRTRLI101). Phosphate-limited cultures had up to six times higher maximum P-i uptake rates than P-replete cultures in both strains. For strain GBRTRLI101, cell-specific P-i uptake rates were nearly twice as high, due to larger cell size, but P-specific maximum uptake rates were similar for both isolates. Half saturation constants were 0.4 and 0.6 muM for P-i uptake and 0.1 and 0.2 muM for growth in IMS101 and GBRTRLI101, respectively. Phosphate uptake in both strains was correlated to growth rates rather than to light or temperature. The cellular phosphorus quota for both strains increased with increasing P-i up to 1.0 muM. The C:P ratios were 340-390 and N:P ratios were 40-45 for both strains under severely P-limited growth conditions, similar to reported values for natural populations from the tropical Atlantic and Pacific Oceans. The C:P and N:P ratios were near Redfield values in medium with >1.0 muM P-i. The North Atlantic strain IMS101 is better adapted to growing on P-i at low concentrations than is GBRTRLI101 from the more P-i-enriched Great Barrier Reef. However, neither strain can achieve appreciable growth at the very low (nanomolar) P-i concentrations found in most oligotrophic regimes. Phosphate could be an important source of phosphorus for Trichodesmium on the Great Barrier Reef, but populations growing in the oligotrophic open ocean must rely primarily on dissolved organic phosphorus sources.
Resumo:
Two bacterial strains, 2AC and 4BC, both capable of utilizing naphthalene-2-sulfonic acid (2-NSA) as a sole source of carbon, were isolated from activated sludges previously exposed to tannery wastewater. Enrichments were carried out in mineral salt medium (MSM) with 2-NSA as the sole carbon source. 16S rDNA sequencing analysis indicated that 2AC is an Arthrobacter sp. and 4BC is a Comamonas sp. Within 33 h, both isolates degraded 100% of 2-NSA in MSM and also 2-NSA in non-sterile tannery wastewater. The yield coefficient was 0.33 g biomass dry weight per gram of 2-NSA. A conceptual model, which describes the aerobic transformation of organic matter, was used for interpreting the biodegradation kinetics of 2-NSA. The half-lives for 2-NSA, at initial concentrations of 100 and 500 mg/l in MSM, ranged from 20 h (2AC) to 26 h (4BC) with lag-phases of 8 h (2AC) and 12 h (4BC). The carbon balance indicates that 75-90% of the initial TOC (total organic carbon) was mineralized, 5-20% remained as DOC (dissolved organic carbon) and 3-10% was biomass carbon. The principal metabolite of 2-NSA biodegradation (in both MSM and tannery wastewater) produced by Comamonas sp. 4BC had a MW of 174 and accounted for the residual DOC (7.0-19.0% of the initial TOC and 66% of the remaining TOC). Three to ten percent of the initial TOC (33% of the remaining TOC) was associated with biomass. The metabolite was not detected when Arthrobacter sp. 2AC was used, and a lower residual DOC and biomass carbon were recorded. This suggests that the two strains may use different catabolic pathways for 2-NSA degradation. The rapid biodegradation of 2-NSA (100 mg/l) added to non-sterile tannery wastewater (total 2-NSA, 105 mg/l) when inoculated with either Arthrobacter 2AC or Comamonas 4BC showed that both strains were able to compete with the indigenous microorganisms and degrade 2-NSA even in the presence of alternate carbon sources (DOC in tannery wastewater = 91 mg/l). The results provide information useful for the rational design of bioreactors for tannery wastewater treatment.