990 resultados para Crushing machinery


Relevância:

20.00% 20.00%

Publicador:

Resumo:

"compiled from Machinery's monthly data sheets and arranged with explanatory notes."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bibliography: p. 86-87.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Description based on: vol. 4, no. 3, June 1898.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the process of internalization of molecules from the extracellular milieu, a cell uses multiple endocytic pathways, consequently generating different endocytic vesicles. These primary endocytic vesicles are targeted to specific destinations inside the cell. Here, we show that GPI-anchored proteins are internalized by an Arf6-independent mechanism into GPI-anchored protein-enriched early endosomal compartments (GEECs). Internalized GPI-anchored proteins and the fluid phase are first visualized in GEECs that are acidic, primary endocytic structures, negative for early endosomal markers, Rab4, Rab5, and early endosome antigen (EEA)1. They subsequently acquire Rab5 and EEA1 before homotypic fusion with other GEECs, and heterotypic fusion with endosomes containing cargo from the clathrin-dependent endocytic pathway. Although, the formation of GEECs is unaffected by inhibition of Rab5 GTPase and phosphatidylinositol-3'-kinase (PI3K) activity, their fusion with sorting endosomes is dependent on both activities. Overexpression of Rab5 reverts PI3K inhibition of fusion, providing evidence that Rab5 effectors play important roles in heterotypic fusion between the dynamin-independent GEECs and clathrin- and dynamin-dependent sorting endosomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy saving in mobile hydraulic machinery, aimed to fuel consumption reduction, has been one of the principal interests of many researchers and OEMs in the last years. Many different solutions have been proposed and investigated in the literature in order to improve the fuel efficiency, from novel system architectures and strategies to control the system to hybrid solutions. This thesis deals with the energy analysis of a hydraulic system of a middle size excavator through mathematical tools. In order to conduct the analyses the multibody mathematical model of the hydraulic excavator under investigation will be developed and validated on the basis of experimental activities, both on test bench and on the field. The analyses will be carried out considering the typical working cycles of the excavators defined by the JCMAS standard. The simulations results will be analysed and discussed in detail in order to define different solutions for the energy saving in LS hydraulic systems. Among the proposed energy saving solutions, energy recovery systems seem to be very promising for fuel consumption reduction in mobile machinery. In this thesis a novel energy recovery system architecture will be proposed and described in detail. Its dimensioning procedure takes advantage of the dynamic programming algorithm and a prototype will be realized and tested on the excavator under investigation. Finally the energy saving proposed solutions will be compared referring to the standard machinery architecture and a novel hybrid excavator with an energy saving up to 11% will be presented.