865 resultados para Cricoids cartilage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to assess if delayed gadolinium MRI of cartilage using postcontrast T(1) (T(1Gd)) is sufficient for evaluating cartilage damage in femoroacetabular impingement without using noncontrast values (T(10)). T(1Gd) and DeltaR(1) (1/T(1Gd) - 1/T(10)) that include noncontrast T(1) measurements were studied in two grades of osteoarthritis and in a control group of asymptomatic young-adult volunteers. Differences between T(1Gd) and DeltaR(1) values for femoroacetabular impingement patients and volunteers were compared. There was a very high correlation between T(1Gd) and DeltaR(1) in all study groups. In the study cohort with Tonnis grade 0, correlation (r) was -0.95 and -0.89 with Tonnis grade 1 and -0.88 in asymptomatic volunteers, being statistically significant (P < 0.001) for all groups. For both T(1Gd) and DeltaR(1), a statistically significant difference was noted between patients and control group. Significant difference was also noted for both T(1Gd) and DeltaR(1) between the patients with Tonnis grade 0 osteoarthritis and those with grade 1 changes. Our results prove a linear correlation between T(1Gd) and DeltaR(1), suggesting that T(1Gd) assessment is sufficient for the clinical utility of delayed gadolinium MRI of cartilage in this setting and additional time-consuming T(10) evaluation may not be needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study defines the feasibility of utilizing three-dimensional (3D) gradient-echo (GRE) MRI at 1.5T for T(2)* mapping to assess hip joint cartilage degenerative changes using standard morphological MR grading while comparing it to delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). MRI was obtained from 10 asymptomatic young adult volunteers and 33 patients with symptomatic femoroacetabular impingement (FAI). The protocol included T(2)* mapping without gadolinium-enhancement utilizing a 3D-GRE sequence with six echoes, and after gadolinium injection, routine hip sequences, and a dual-flip-angle 3D-GRE sequence for dGEMRIC T(1) mapping. Cartilage was classified as normal, with mild changes, or with severe degenerative changes based on morphological MRI. T(1) and T(2)* findings were subsequently correlated. There were significant differences between volunteers and patients in normally-rated cartilage only for T(1) values. Both T(1) and T(2)* values decreased significantly with the various grades of cartilage damage. There was a statistically significant correlation between standard MRI and T(2)* (T(1)) (P < 0.05). High intraclass correlation was noted for both T(1) and T(2)*. Correlation factor was 0.860 to 0.954 (T(2)*-T(1) intraobserver) and 0.826 to 0.867 (T(2)*-T(1) interobserver). It is feasible to gather further information about cartilage status within the hip joint using GRE T(2)* mapping at 1.5T.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The double-echo-steady-state (DESS) sequence generates two signal echoes that are characterized by a different contrast behavior. Based on these two contrasts, the underlying T2 can be calculated. For a flip-angle of 90 degrees , the calculated T2 becomes independent of T1, but with very low signal-to-noise ratio. In the present study, the estimation of cartilage T2, based on DESS with a reduced flip-angle, was investigated, with the goal of optimizing SNR, and simultaneously minimizing the error in T2. This approach was validated in phantoms and on volunteers. T2 estimations based on DESS at different flip-angles were compared with standard multiecho, spin-echo T2. Furthermore, DESS-T2 estimations were used in a volunteer and in an initial study on patients after cartilage repair of the knee. A flip-angle of 33 degrees was the best compromise for the combination of DESS-T2 mapping and morphological imaging. For this flip angle, the Pearson correlation was 0.993 in the phantom study (approximately 20% relative difference between SE-T2 and DESS-T2); and varied between 0.429 and 0.514 in the volunteer study. Measurements in patients showed comparable results for both techniques with regard to zonal assessment. This DESS-T2 approach represents an opportunity to combine morphological and quantitative cartilage MRI in a rapid one-step examination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Factors such as instability and impingement lead to early cartilage damage and osteoarthritis of the hip joint. The surgical outcome of joint-preserving surgery about the hip joint depends on the preoperative quality of joint cartilage.For in vivo evaluation of cartilage quality, different biochemically sensitive magnetic resonance imaging (MRI) procedures have been tested, some of which have the potential of inducing a paradigm shift in the evaluation and treatment of cartilage damage and early osteoarthritis.Instead of reacting to late sequelae in a palliative way, physicians could assess cartilage damage early on, and the treatment intensity could be adequate and based on the disease stage. Furthermore, the efficiency of different therapeutic interventions could be evaluated and monitored.This article reviews the recent application of delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and discusses its use for assessing cartilage quality in the hip joint. dGEMRIC is more sensitive to early cartilage changes in osteoarthritis than are radiographic measures and might be a helpful tool for assessing cartilage quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The aim of the present pilot study is to show initial results of a multimodal approach using clinical scoring, morphological magnetic resonance imaging (MRI) and biochemical T2-relaxation and diffusion-weighted imaging (DWI) in their ability to assess differences between cartilage repair tissue after microfracture therapy (MFX) and matrix-associated autologous chondrocyte transplantation (MACT). METHOD: Twenty patients were cross-sectionally evaluated at different post-operative intervals from 12 to 63 months after MFX and 12-59 months after MACT. The two groups were matched by age (MFX: 36.0+/-10.4 years; MACT: 35.1+/-7.7 years) and post-operative interval (MFX: 32.6+/-16.7 months; MACT: 31.7+/-18.3 months). After clinical evaluation using the Lysholm score, 3T-MRI was performed obtaining the MR observation of cartilage repair tissue (MOCART) score as well as T2-mapping and DWI for multi-parametric MRI. Quantitative T2-relaxation was achieved using a multi-echo spin-echo sequence; semi-quantitative diffusion-quotient (signal intensity without diffusion-weighting divided by signal intensity with diffusion weighting) was prepared by a partially balanced, steady-state gradient-echo pulse sequence. RESULTS: No differences in Lysholm (P=0.420) or MOCART (P=0.209) score were observed between MFX and MACT. T2-mapping showed lower T2 values after MFX compared to MACT (P=0.039). DWI distinguished between healthy cartilage and cartilage repair tissue in both procedures (MFX: P=0.001; MACT: P=0.007). Correlations were found between the Lysholm and the MOCART score (Pearson: 0.484; P=0.031), between the Lysholm score and DWI (Pearson:-0.557; P=0.011) and a trend between the Lysholm score and T2 (Person: 0.304; P=0.193). CONCLUSION: Using T2-mapping and DWI, additional information could be gained compared to clinical scoring or morphological MRI. In combination clinical, MR-morphological and MR-biochemical parameters can be seen as a promising multimodal tool in the follow-up of cartilage repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this article was to evaluate the potential of in vivo zonal T2-mapping as a noninvasive tool in the longitudinal visualization of cartilage repair tissue maturation after matrix-associated autologous chondrocyte transplantation (MACT). Fifteen patients were treated with MACT and evaluated cross-sectionally, with a baseline MRI at a follow-up of 19.7 +/- 12.1 months after cartilage transplantation surgery of the knee. In the same 15 patients, 12 months later (31.7 +/- 12.0 months after surgery), a longitudinal 1-year follow-up MRI was obtained. MRI was performed on a 3 Tesla MR scanner; morphological evaluation was performed using a double-echo steady-state sequence; T2 maps were calculated from a multiecho, spin-echo sequence. Quantitative mean (full-thickness) and zonal (deep and superficial) T2 values were calculated in the cartilage repair area and in control cartilage sites. A statistical analysis of variance was performed. Full-tickness T2 values showed no significant difference between sites of healthy cartilage and cartilage repair tissue (p < 0.05). Using zonal T2 evaluation, healthy cartilage showed a significant increase from the deep to superficial cartilage layers (p < 0.05). Cartilage repair tissue after MACT showed no significant zonal increase from deep to superficial cartilage areas during baseline MRI (p > 0.05); however, during the 1-year follow-up, a significant zonal stratification could be observed (p < 0.05). Morphological evaluation showed no significant difference between the baseline and the 1-year follow-up MRI. T2 mapping seems to be more sensitive in revealing changes in the repair tissue compared to morphological MRI. In vivo zonal T2 assessment may be sensitive enough to characterize the maturation of cartilage repair tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To determine the feasibility of assessing early osteoarthritis (OA) in hips with femoroacetabular impingement (FAI) using delayed Gadolinium enhanced MRI of Cartilage (dGEMRIC). MATERIALS AND METHODS: Thirty-seven hips in 30 patients who had a dGEMRIC scan and radiographic evidence of FAI were identified. Clinical symptoms were assessed. Radiographic measurements were performed to determine acetabular and femoral morphology. The severity of radiographic OA was determined using Tönnis grade and minimum joint space width (JSW). On MRI, the alpha angle was measured on the sagittal oblique slices. Correlations between dGEMRIC index, patient symptoms, morphologic measurements, radiographic OA, and age were determined. RESULTS: Significant correlations were observed between dGEMRIC index, pain (P < 0.05), and alpha angle (P < 0.05). The correlation of dGEMRIC with alpha angle suggests that hips with more femoral deformity show signs of early OA. CONCLUSION: The results of osteoplasty for FAI depend on the amount of pre-existing OA in the joint. dGEMRIC may be a useful technique for diagnosis and staging of early osteoarthritis in hips with impingement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Cartilage defects are common pathologies and surgical cartilage repair shows promising results. In its postoperative evaluation, the magnetic resonance observation of cartilage repair tissue (MOCART) score, using different variables to describe the constitution of the cartilage repair tissue and the surrounding structures, is widely used. High-field magnetic resonance imaging (MRI) and 3-dimensional (3D) isotropic sequences may combine ideal preconditions to enhance the diagnostic performance of cartilage imaging.Aim of this study was to introduce an improved 3D MOCART score using the possibilities of an isotropic 3D true fast imaging with steady-state precession (True-FISP) sequence in the postoperative evaluation of patients after matrix-associated autologous chondrocyte transplantation (MACT) as well as to compare the results to the conventional 2D MOCART score using standard MR sequences. MATERIAL AND METHODS: The study had approval by the local ethics commission. One hundred consecutive MR scans in 60 patients at standard follow-up intervals of 1, 3, 6, 12, 24, and 60 months after MACT of the knee joint were prospectively included. The mean follow-up interval of this cross-sectional evaluation was 21.4 +/- 20.6 months; the mean age of the patients was 35.8 +/- 9.4 years. MRI was performed at a 3.0 Tesla unit. All variables of the standard 2D MOCART score where part of the new 3D MOCART score. Furthermore, additional variables and options were included with the aims to use the capabilities of isotropic MRI, to include the results of recent studies, and to adapt to the needs of patients and physician in a clinical routine examination. A proton-density turbo spin-echo sequence, a T2-weighted dual fast spin-echo (dual-FSE) sequence, and a T1-weighted turbo inversion recovery magnitude (TIRM) sequence were used to assess the standard 2D MOCART score; an isotropic 3D-TrueFISP sequence was prepared to evaluate the new 3D MOCART score. All 9 variables of the 2D MOCART score were compared with the corresponding variables obtained by the 3D MOCART score using the Pearson correlation coefficient; additionally the subjective quality and possible artifacts of the MR sequences were analyzed. RESULTS: The correlation between the standard 2D MOCART score and the new 3D MOCART showed for the 8 variables "defect fill," "cartilage interface," "surface," "adhesions," "structure," "signal intensity," "subchondral lamina," and "effusion"-a highly significant (P < 0.001) correlation with a Pearson coefficient between 0.566 and 0.932. The variable "bone marrow edema" correlated significantly (P < 0.05; Pearson coefficient: 0.257). The subjective quality of the 3 standard MR sequences was comparable to the isotropic 3D-TrueFISP sequence. Artifacts were more frequently visible within the 3D-TrueFISP sequence. CONCLUSION: In the clinical routine follow-up after cartilage repair, the 3D MOCART score, assessed by only 1 high-resolution isotropic MR sequence, provides comparable information than the standard 2D MOCART score. Hence, the new 3D MOCART score has the potential to combine the information of the standard 2D MOCART score with the possible advantages of isotropic 3D MRI at high-field. A clear limitation of the 3D-TrueFISP sequence was the high number of artifacts. Future studies have to prove the clinical benefits of a 3D MOCART score.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To evaluate the relationship between T1 after intravenous contrast administration (T1Gd) and Delta relaxation rate (DeltaR1) = (1/T1(Gd) - 1/T1o) in the delayed Gadolinium-Enhanced MRI of cartilage (dGEMRIC) evaluation of cartilage repair tissue. MATERIALS AND METHODS: Thirty single MR examinations from 30 patients after matrix-associated autologous chondrocyte transplantations of the knee joint with different postoperative intervals were examined using an 8-channel knee-coil at 3T. T1 mapping using a 3D GRE sequence with a 35/10 degrees flip angle excitation pulse combination was performed before and after contrast administration (dGEMRIC technique). T1 postcontrast (T1(Gd)) and the DeltaR1 (relative index of pre- and postcontrast R1 value) were calculated for repair tissue and the weight-bearing normal appearing control cartilage. For evaluation of the different postoperative intervals, MR exams were subdivided into 3 groups (up to 12 months, 12-24 months, more than 24 months). For statistical analysis Spearman correlation coefficients were calculated. RESULTS: The mean value for T1 postcontrast was 427 +/- 159 ms, for DeltaR1 1.85 +/- 1.0; in reference cartilage 636 +/- 181 ms for T1 postcontrast and 0.83 +/- 0.5 for DeltaR1.The correlation coefficients were highly significant between T1 (Gd) and DeltaR1 for repair tissue (0.969) as well as normal reference cartilage (0.928) in total, and for the reparative cartilage in the early, middle postoperative, and late postoperative interval after surgery (R values: -0.986, -0.970, and -0.978, respectively). Using either T1(Gd) or DeltaR1, the 2 metrics resulted in similar conclusions regarding the time course of change of repair tissue and control tissue, namely that highly significant (P > 0.01) differences between cartilage repair tissue and reference cartilage were found for all follow-up groups. Additionally, for both metrics highly significant differences (P < 0.01) between early follow up and the 2 later postoperative groups for cartilage repair tissue were found. No statistical differences were found between the 2 later follow-up groups of reparative cartilage either for T1 (Gd) or DeltaR1. CONCLUSION: The high correlation between T1 (Gd) and DeltaR1 and the comparable conclusions reached utilizing metric implies that T1 mapping before intravenous administration of MR contrast agent is not necessary for the evaluation of repair tissue. This will help to reduce costs, inconvenience for the patients, simplifies the examination procedure, and makes dGEMRIC more attractive for follow-up of patients after cartilage repair surgeries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The aim of this study was to use morphological as well as biochemical (T2 and T2* relaxation times and diffusion-weighted imaging (DWI)) magnetic resonance imaging (MRI) for the evaluation of healthy cartilage and cartilage repair tissue after matrix-associated autologous chondrocyte transplantation (MACT) of the ankle joint. MATERIALS AND METHODS: Ten healthy volunteers (mean age, 32.4 years) and 12 patients who underwent MACT of the ankle joint (mean age, 32.8 years) were included. In order to evaluate possible maturation effects, patients were separated into short-term (6-13 months) and long-term (20-54 months) follow-up cohorts. MRI was performed on a 3.0-T magnetic resonance (MR) scanner using a new dedicated eight-channel foot-and-ankle coil. Using high-resolution morphological MRI, the magnetic resonance observation of cartilage repair tissue (MOCART) score was assessed. For biochemical MRI, T2 mapping, T2* mapping, and DWI were obtained. Region-of-interest analysis was performed within native cartilage of the volunteers and control cartilage as well as cartilage repair tissue in the patients subsequent to MACT. RESULTS: The overall MOCART score in patients after MACT was 73.8. T2 relaxation times (approximately 50 ms), T2* relaxation times (approximately 16 ms), and the diffusion constant for DWI (approximately 1.3) were comparable for the healthy volunteers and the control cartilage in the patients after MACT. The cartilage repair tissue showed no significant difference in T2 and T2* relaxation times (p > or = 0.05) compared to the control cartilage; however, a significantly higher diffusivity (approximately 1.5; p < 0.05) was noted in the cartilage repair tissue. CONCLUSION: The obtained results suggest that besides morphological MRI and biochemical MR techniques, such as T2 and T2* mapping, DWI may also deliver additional information about the ultrastructure of cartilage and cartilage repair tissue in the ankle joint using high-field MRI, a dedicated multichannel coil, and sophisticated sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the reliability and validity of a novel ultrasound (US) imaging method to measure metacarpophalangeal (MCP) and proximal interphalangeal (PIP) finger joint cartilage. METHODS: We examined 48 patients with rheumatoid arthritis (RA), 18 patients with osteoarthritis (OA), 24 patients with unclassified arthritis of the finger joints, and 34 healthy volunteers. The proximal cartilage layer of MCP and PIP joints for fingers 2-5 was bilaterally visualized from a posterior view, with joints in approximately 90 degrees flexion. Cartilage thickness was measured with integrated tools on static images. External validity was assessed by measuring radiologic joint space width (JSW) and a numeric joint space narrowing (JSN) score in patients with RA. RESULTS: Precise measurement was possible for 97.5% of MCP and 94.2% of PIP joints. Intraclass correlation coefficients for bilateral total joint US scores were 0.844 (95% confidence interval [95% CI] 0.648-0.935) for interobserver comparisons and 0.928 (95% CI 0.826-0.971) for intraobserver comparisons (using different US devices). The US score correlated with JSN for both hands (adjusted R(2) = 0.513, P < 0.001) and JSW of the same finger joints (adjusted R(2) = 0.635, P < 0.001). Reduced cartilage shown by US allowed discrimination of early symptomatic OA versus early RA and healthy joints. In patients with RA, US scores correlated with duration of treatment-resistant, progressive RA. CONCLUSION: The US method of direct visualization and quantification of cartilage in MCP and PIP joints is objective, reliable, valid, and can be useful for diagnostic purposes in patients with arthritis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and functional characterization of integrative cartilage repair in controlled model systems can play a key role in the development of innovative strategies to improve the long-term outcome of many cartilage repair procedures. In this work, we first developed a method to reproducibly generate geometrically defined disk/ring cartilage composites and to remove outgrown fibrous layers which can encapsulate cartilaginous tissues during culture. We then used the model system to test the hypothesis that such fibrous layers lead to an overestimation of biomechanical parameters of integration at the disk/ring interface. Transmission electron microscopy images of the composites after 6 weeks of culture indicated that collagen fibrils in the fibrous tissue layer were well integrated into the collagen network of the cartilage disk and ring, whereas molecular bridging between opposing disk/ring cartilage surfaces was less pronounced and restricted to regions with narrow interfacial regions (< 2 microm). Stress-strain profiles generated from mechanical push-out tests for composites with the layers removed displayed a single and distinct peak, whereas profiles for composites with the layers left intact consisted of multiple superimposed peaks. As compared to composites with removed layers, composites with intact layers had significantly higher adhesive strengths (161+/-9 vs. 71+/-11 kPa) and adhesion energies (15.0+/-0.7 vs. 2.7+/-0.4 mJ/mm2). By combining structural and functional analyses, we demonstrated that the outgrowing tissue formed during in vitro culture of cartilaginous specimens should be eliminated in order to reliably quantify biomechanical parameters related to integrative cartilage repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Understanding of articular cartilage physiology, remodelling mechanisms, and evaluation of tissue engineering repair methods requires reference information regarding normal structural organization. Our goals were to examine the variation of cartilage cell and matrix morphology in different topographical areas of the adult human knee joint. METHODS: Osteochondral explants were acquired from seven distinct anatomical locations of the knee joints of deceased persons aged 20-40 years and prepared for analysis of cell, matrix and tissue morphology using confocal microscopy and unbiased stereological methods. Differences between locations were identified by statistical analysis. RESULTS: Medial femoral condyle cartilage had relatively high cell surface area per unit tissue volume in the superficial zone. In the transitional zone, meniscus-covered lateral tibia cartilage showed elevated chondrocyte densities compared to the rest of the knee while lateral femoral condyle cartilage exhibited particularly large chondrocytes. Statistical analyses indicated highly uniform morphology throughout the radial zone (lower 80% of cartilage thickness) in the knee, and strong similarities in cell and matrix morphologies among cartilage from the femoral condyles and also in the mediocentral tibial plateau. Throughout the adult human knee, the mean matrix volume per chondron was remarkably constant at approximately 224,000 microm(3), corresponding to approximately 4.6 x 10(6) chondrons per cm(3). CONCLUSIONS: The uniformity of matrix volume per chondron throughout the adult human knee suggests that cell-scale biophysical and metabolic constraints may place limitations on cartilage thickness, mechanical properties, and remodelling mechanisms. Data may also aid the evaluation of cartilage tissue engineering treatments in a site-specific manner. Results indicate that joint locations which perform similar biomechanical functions have similar cell and matrix morphologies; findings may therefore also provide clues to understanding conditions under which focal lesions leading to osteoarthritis may occur.