968 resultados para Coupled clamped beams
Resumo:
A three degree of freedom model of the dynamic mass at the middle of a test sample, resembling a Stockbridge neutraliser, is introduced. This model is used to identify the hereby called equivalent complex cross section flexural stiffness (ECFS) of the beam element which is part of the whole test sample. This ECFS, once identified, gives the effective cross section flexural stiffness of the beam as well as its effective damping, measured as the loss factor of an equivalent viscoelastic beam. The beam element of the test sample may be of any complexity, such as a segment of stranded cable of the ACSR type. These data are important parameters for the design of overhead power transmission lines and other cable structures. A cost function is defined and used in the identification of the ECFS. An experiment, designed to measure the dynamic masses of two test samples, is described. Experimental and identified results are presented and discussed.
Resumo:
This work presents an application of the Mobility Approach to the analysis of the power flow through grillage-like structures. Such structures are usually found in offshore platforms, supporting large and heavy machines. Different wave kinds (longitudinal, flexural and torsional) were initially considered in the power flow analysis between two beams joined in L. Beams excited by an in-plane point force showed strong coupling between longitudinal-flexural waves, while that for out-of-plane point force excitation, flexural-torsional waves coupling represents the most important mechanism of energy transmission. The response determination of grillages by the mobility approach requires the structure to be separated into simple beam-like structural components. Equations for rotations and displacements at the joints of all beams are written for as mobility functions, and moments and forces acting at the joints. A system of equations relating all such internal forces and moments is obtained. This approach was applied to simple grillages. Response results showed good agreement when compared to those provided by Finite Elements.
Resumo:
Composite flooring systems supported by tapered (varying web depth) beams are very attractive from an economic point of view. However, the tapered beam sections are fabricated from plate by welding, and are susceptible to imperfection effects. These may interact with the localised compressive stress field that is generated in the web at a slope change in the lower flange to cause local web buckling. A substantial parametric study using a non-linear elasto-plastic finite element program and covering practical ranges of the important parameters including the area of the tension flange, taper slope and web thickness is reported. Moment-rotation relations, peak moments and failure mechanisms have been predicted. The validity of the work is supported by the good correlation obtained between the results of the parametric study and experimental data.
Resumo:
A three degree of freedom model of the dynamic mass at the middle of a test sample, resembling a Stockbridge neutraliser, is introduced. This model is used to identify the hereby called equivalent complex cross section flexural stiffness (ECFS) of the beam element which is part of the whole test sample. This ECFS, once identified, gives the effective cross section flexural stiffness of the beam as well as its effective damping, measured as the loss factor of an equivalent viscoelastic beam. The beam element of the test sample may be of any complexity, such as a segment of stranded cable of the ACSR type. These data are important parameters for the design of overhead power transmission lines and other cable structures. A cost function is defined and used in the identification of the ECFS. An experiment, designed to measure the dynamic masses of two test samples, is described. Experimental and identified results are presented and discussed.
Resumo:
G protein-coupled receptor (GPCR) activation is followed rapidly by adaptive changes that serve to diminish the responsiveness of a cell to further stimulation. This process, termed desensitization, is the consequence of receptor phosphorylation, arrestin binding, sequestration and down-regulation. GPCR phosphorylation is initiated within seconds to minutes of receptor activation and is mediated by both second messenger-dependent protein kinases and receptor-specific G protein-coupled receptor kinases (GRKs). Desensitization in response to GRK-mediated phosphorylation involves the binding of arrestin proteins that serve to sterically uncouple the receptor from its G protein. GPCR sequestration, the endocytosis of receptors to endosomes, not only contributes to the temporal desensitization of GPCRs, but plays a critical role in GPCR resensitization. GPCR down-regulation, a loss of the total cellular complement of receptors, is the consequence of both increased lysosomal degradation and decreased mRNA synthesis of GPCRs. While each of these agonist-mediated desensitization processes are initiated within a temporally dissociable time frame, recent data suggest that they are intimately related to one another. The use of green fluorescent protein from the jellyfish Aqueora victoria as an epitope tag with intrinsic fluorescence has facilitated our understanding of the relative relationship between GRK phosphorylation, arrestin binding, receptor sequestration and down-regulation.
Resumo:
A new protocol is described for immunization of outbred Swiss mice. The procedure is based on subcutaneous implantation of antigen-coupled polyester-polyurethane sponges cut into disks of 10 mm in diameter vs 2 mm in thickness. Antigen coupling was performed by overnight incubation of the sponge with a solution of ovalbumin (Ova) (2 mg/ml) diluted in sodium carbonate buffer, pH 9.6. The amount of ovalbumin that was taken up by the sponge was between 71.4 to 82.5 µg. This was estimated by comparing the Ova absorbance at 280 nm in coating buffer solutions before and after incubation. To compare the efficiency of the proposed method, experimental groups immunized with the antigen in the presence of adjuvants (10 µg in Al(OH)3 or 100 µg in complete Freund's adjuvant (CFA)) were run in parallel. The data obtained after the 3rd week of immunization indicate that both cellular and humoral immune responses were achieved. These were assayed by antigen-induced footpad swelling and ELISA (specific antibodies), respectively. The levels of both immune responses elicited were similar to the responses observed in mice immunized with ovalbumin in the presence of Al(OH)3. The method might represent an advantage when immunizing with pathogenic antigens. Preliminary experiments have suggested that the antigen remains immobilized or bound to the sponge for a long period of time, since there is an increment on the cell population inside the sponges after boosting the animals. If so, the undesirable effects of immunization would be reduced.
Resumo:
Recent technological developments have created new devices that could improve and simplify the construction of stimulus isolators. HEXFET transistors can switch large currents and hundreds of volts in nanoseconds. The newer opto-isolators can give a pulse rise time of a few nanoseconds, with output compatible with MOSFET devices, in which delays are reduced to nanoseconds. Integrated DC/DC converters are now available. Using these new resources we developed a new electrical stimulus isolator circuit with selectable constant-current and constant-voltage modes, which are precise and easy to construct. The circuit works like a regulated power supply in both modes with output switched to zero or to free mode through an opto-isolator device. The isolator analyses showed good practical performance. The output to ground resistance was 1011 ohms and capacitance 35 picofarads. The rise time and fall time were identical (5 µs) and constant. The selectable voltage or current output mode made it very convenient to use. The current mode, with higher output resistance values in low current ranges, permits intracellular stimulation even with tip resistances close to 100 megaohms. The high compliance of 200 V guarantees the value of the current stimulus. The very low output resistance in the voltage mode made the device highly suitable for extracellular stimulation with low impedance electrodes. Most importantly, these characteristics were achieved with a circuit that was easy to build and modify and assembled with components available in Brazil.
Resumo:
Extracellular matrix proteins and cell adhesion receptors (integrins) play essential roles in the regulation of cell adhesion and migration. Interactions of integrins with the extracellular matrix proteins lead to phosphorylation of several intracellular proteins such as focal adhesion kinase, activating different signaling pathways responsible for the regulation of a variety of cell functions, including cytoskeleton mobilization. Once leukocytes are guided to sites of infection, inflammation, or antigen presentation, integrins can participate in the initiation, maintenance, or termination of the immune and inflammatory responses. The modulation of neutrophil activation through integrin-mediated pathways is important in the homeostatic control of the resolution of inflammatory states. In addition, during recirculation, T lymphocyte movement through distinct microenvironments is mediated by integrins, which are critical for cell cycle, differentiation and gene expression. Disintegrins are a family of low-molecular weight, cysteine-rich peptides first identified in snake venom, usually containing an RGD (Arg-Gly-Asp) motif, which confers the ability to selectively bind to integrins, inhibiting integrin-related functions in different cell systems. In this review we show that, depending on the cell type and the microenvironment, disintegrins are able to antagonize the effects of integrins or to act agonistically by activating integrin-mediated signaling. Disintegrins have proven useful as tools to improve the understanding of the molecular events regulated by integrin signaling in leukocytes and prototypes in order to design therapies able to interfere with integrin-mediated effects.
Resumo:
(E)-2-nonenal is considered an important off-flavor of beer, related to the flavor of beer staling. In this study, a new method for determination of (E)-2-nonenal in beer using headspace solid-phase microextraction and gas chromatographic coupled mass spectrometry (HS-SPME-GC-MS) was developed and applied in Brazilian beer samples. The extractions were carried out in CAR-PDMS (carboxen-polydimethylsiloxane) fiber and the best results were found with 15 minutes of equilibrium and 90 minutes of extraction at 50 °C. The method was linear in the range from 0.02 to 4.0 μg.L-1 with correlation coefficient of 0.9994. The limits of detection and quantification were 0.01 and 0.02 μg.L-1, respectively. 96.5% of recovery and 4% precision (RSD) were obtained in the fortification of beer samples with 2.0 μg.L-1 of (E)-2-nonenal. The developed method proved to be simple, efficient and highly sensitive to the determination of this analyte being easily applied in the quality control of the brewery. (E)-2-nonenal was found in all beer samples analyzed with levels between 0.17 and 0.42 μg.L-1.
Resumo:
A method using Liquid Chromatography Tanden Mass Spectrometry (LC-MS/MS) with matrix-matched calibration curve was developed and validated for determining ochratoxin A (OTA) in green coffee. Linearity was found between 3.0 and 23.0 ng.g-1. Mean recoveries ranged between 90.45% and 108.81%; the relative standard deviation under repeatability and intermediate precision conditions ranged from 5.39% to 9.94% and from 2.20% to 14.34%, respectively. The limits of detection and quantification were 1.2 ng.g-1 and 3.0 ng.g-¹, respectively. The method developed was suitable and contributed to the field of mycotoxin analysis, and it will be used for future production of the Certified Reference Material (CRM) for OTA in coffee.
Resumo:
Abstract The present work describes setting up a laboratory unit for supercritical fluid extraction. In addition to its construction, a survey of cost was done to compare the cost of the homemade unit with that of commercial units. The equipment was validated using an extraction of annatto seeds’ oil, and the extraction and fractionation of fennel oil were used to validate the two separators; for both systems, the solvent was carbon dioxide. The chemical profiles of annatto and fennel extracts were assessed using thin layer chromatography; the images of the chromatographic plates were processed using the free ImageJ software. The cost survey showed that the homemade equipment has a very low cost (~US$ 16,000) compared to commercial equipment. The extraction curves of annatto were similar to those obtained in the literature (yield of 3.8% oil). The separators were validated, producing both a 2.5% fraction of fennel seed extract rich in essential oils and another extract fraction composed mainly of oleoresins. The ImageJ software proved to be a low-cost tool for obtaining an initial evaluation of the chemical profile of the extracts.
Resumo:
Arsenic, bismuth, germanium, antimony and tin were simultaneously determined by continuous hydride generation and inductively coupled plasma-atomic emission spectrometry . I Hydrides were introduced into four different types of gas-liquid separators. Two of the gas-liquid separators were available in-house. A third was developed for this project and a fourth was based on a design used by CET AC. The best signal intensity was achieved by the type II frit-based gas-liquid separator, but the modified Cetac design gave promise for the future, due to low relative standard deviation. A method was developed for the determination of arsenic, bismuth, antimony and tin in low-alloy steels. Four standard reference materials from NIST were dissolved in 10 mL aqua regia without heat. Good agreement was obtained between experimental values and certified values for arsenic, bismuth, antimony and tin. The method was developed to provide the analyst with the opportunity to determine the analytes by using simple aqueous standards to prepare calibration lines. Within the limits of the samples analyzed, the method developed is independent of matrix.
Resumo:
A simple, low-cost concentric capillary nebulizer (CCN) was developed and evaluated for ICP spectrometry. The CCN could be operated at sample uptake rates of 0.050-1.00 ml min'^ and under oscillating and non-oscillating conditions. Aerosol characteristics for the CCN were studied using a laser Fraunhofter diffraction analyzer. Solvent transport efficiencies and transport rates, detection limits, and short- and long-term stabilities were evaluated for the CCN with a modified cyclonic spray chamber at different sample uptake rates. The Mg II (280.2nm)/l\/lg 1(285.2nm) ratio was used for matrix effect studies. Results were compared to those with conventional nebulizers, a cross-flow nebulizer with a Scott-type spray chamber, a GemCone nebulizer with a cyclonic spray chamber, and a Meinhard TR-30-K3 concentric nebulizer with a cyclonic spray chamber. Transport efficiencies of up to 57% were obtained for the CCN. For the elements tested, short- and long-term precisions and detection limits obtained with the CCN at 0.050-0.500 ml min'^ are similar to, or better than, those obtained on the same instrument using the conventional nebulizers (at 1.0 ml min'^). The depressive and enhancement effects of easily ionizable element Na, sulfuric acid, and dodecylamine surfactant on analyte signals with the CCN are similar to, or better than, those obtained with the conventional nebulizers. However, capillary clog was observed when the sample solution with high dissolved solids was nebulized for more than 40 min. The effects of data acquisition and data processing on detection limits were studied using inductively coupled plasma-atomic emission spectrometry. The study examined the effects of different detection limit approaches, the effects of data integration modes, the effects of regression modes, the effects of the standard concentration range and the number of standards, the effects of sample uptake rate, and the effect of Integration time. All the experiments followed the same protocols. Three detection limit approaches were examined, lUPAC method, the residual standard deviation (RSD), and the signal-to-background ratio and relative standard deviation of the background (SBR-RSDB). The study demonstrated that the different approaches, the integration modes, the regression methods, and the sample uptake rates can have an effect on detection limits. The study also showed that the different approaches give different detection limits and some methods (for example, RSD) are susceptible to the quality of calibration curves. Multicomponents spectral fitting (MSF) gave the best results among these three integration modes, peak height, peak area, and MSF. Weighted least squares method showed the ability to obtain better quality calibration curves. Although an effect of the number of standards on detection limits was not observed, multiple standards are recommended because they provide more reliable calibration curves. An increase of sample uptake rate and integration time could improve detection limits. However, an improvement with increased integration time on detection limits was not observed because the auto integration mode was used.
Resumo:
Part I: Ultra-trace determination of vanadium in lake sediments: a performance comparison using O2, N20, and NH3 as reaction gases in ICP-DRC-MS Thermal ion-molecule reactions, targeting removal of specific spectroscopic interference problems, have become a powerful tool for method development in quadrupole based inductively coupled plasma mass spectrometry (ICP-MS) applications. A study was conducted to develop an accurate method for the determination of vanadium in lake sediment samples by ICP-MS, coupled with a dynamic reaction cell (DRC), using two differenvchemical resolution strategies: a) direct removal of interfering C10+ and b) vanadium oxidation to VO+. The performance of three reaction gases that are suitable for handling vanadium interference in the dynamic reaction cell was systematically studied and evaluated: ammonia for C10+ removal and oxygen and nitrous oxide for oxidation. Although it was able to produce comparable results for vanadium to those using oxygen and nitrous oxide, NH3 did not completely eliminate a matrix effect, caused by the presence of chloride, and required large scale dilutions (and a concomitant increase in variance) when the sample and/or the digestion medium contained large amounts of chloride. Among the three candidate reaction gases at their optimized Eonditions, creation of VO+ with oxygen gas delivered the best analyte sensitivity and the lowest detection limit (2.7 ng L-1). Vanadium results obtained from fourteen lake sediment samples and a certified reference material (CRM031-040-1), using two different analytelinterference separation strategies, suggested that the vanadium mono-oxidation offers advantageous performance over the conventional method using NH3 for ultra-trace vanadium determination by ICP-DRC-MS and can be readily employed in relevant environmental chemistry applications that deal with ultra-trace contaminants.Part II: Validation of a modified oxidation approach for the quantification of total arsenic and selenium in complex environmental matrices Spectroscopic interference problems of arsenic and selenium in ICP-MS practices were investigated in detail. Preliminary literature review suggested that oxygen could serve as an effective candidate reaction gas for analysis of the two elements in dynamic reaction cell coupled ICP-MS. An accurate method was developed for the determination of As and Se in complex environmental samples, based on a series of modifications on an oxidation approach for As and Se previously reported. Rhodium was used as internal standard in this study to help minimize non-spectral interferences such as instrumental drift. Using an oxygen gas flow slightly higher than 0.5 mL min-I, arsenic is converted to 75 AS160+ ion in an efficient manner whereas a potentially interfering ion, 91Zr+, is completely removed. Instead of using the most abundant Se isotope, 80Se, selenium was determined by a second most abundant isotope, 78Se, in the form of 78Se160. Upon careful selection of oxygen gas flow rate and optimization ofRPq value, previous isobaric threats caused by Zr and Mo were reduced to background levels whereas another potential atomic isobar, 96Ru+, became completely harmless to the new selenium analyte. The new method underwent a strict validation procedure where the recovery of a suitable certified reference material was examined and the obtained sample data were compared with those produced by a credible external laboratory who analyzed the same set of samples using a standardized HG-ICP-AES method. The validation results were satisfactory. The resultant limits of detection for arsenic and selenium were 5 ng L-1 and 60 ng L-1, respectively.
Resumo:
Multicoloured Asian Lady Beetles (MALB) and 7-spot Lady Beetles that infect vineyards can secrete alkyl-methoxypyrazines when they are processed with the grapes, resulting in wines containing a taint. The main methoxypyrazine associated with this taint is 3-isopropyl-2-methoxypyrazine (IPMP). The wines are described as having aroma and flavours of peanut butter, peanut shells, asparagus and earthy which collectively, have become known as “ladybug taint”. To date, there are no known fining agents used commercially added to juice or wine that are effective in removing this taint. The goal of this project was to use previously identified proteins with an ability to bind to methoxypyrazines at low pH, and subsequently develop a binding assay to test the ability of these proteins to bind to and remove methoxypyrazines from grape juice. The piglet odorant binding protein (plOBP) and mouse major urinary protein (mMUP) were identified, cloned and expressed in the Pichia pastoris expression system. Protein expression was induced using methanol and the proteins were subsequently purified from the induction media using anion exchange chromatography. The purified proteins were freeze-dried and rehydrated prior to use in the methoxypyrazine removal assay. The expression and purification system resulted in yields of approximately 78% of purified plOBP and 62% of purified mMUP from expression to rehydration. Purified protein values were 87 mg of purified plOPB per litre of induction media and 19 mg of purified mMUP per litre of induction medium. In order to test the ability of the protein to bind to the MPs, an MP removal assay was developed. In the assay, the purified protein is incubated with either IPMP or 3-isobutyl-2-methoxypyrazine (IBMP) for two hours in either buffer or grape juice. Bentonite is then used to capture the protein-MP complex and the bentonite-protein-MP complex is then removed from solution by filtration. Residual MP is measured in solution following the MP removal assay and compared to that in the starting solution by Gas Chromatography Mass Spectrometry (GC/MS). GC/MS results indicated that the mMUP was capable of removing IBMP and IPMP from 300 ng/L in buffer pH 4.0, buffer pH 3.5 and Riesling Juice pH 3.5 down to the limit of quantification of the instrument, which is 6ng/L and 2ng/L for IBMP and IPMP, respectively. The results for the plOBP showed that although it could remove some IBMP, it was only approximately 50-70 ng/L more than bentonite treatment followed by filtration, resulting in approximately 100 ng/L of the MPs being left in solution. pIOBP was not able to remove IPMP in buffer pH 3.5 using this system above that removed by bentonite alone. As well, the pIOBP was not able to remove any additional MPs from Chardonnay juice pH 3.5 above that already removed by the bentonite and filtration alone. The mouse MUP was shown to be a better candidate protein for removal of MPs from juice using this system.