932 resultados para Cotton Genesis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O presente estudo teve como objetivo investigar a atratividade do bicudo do algodoeiro ao seu feromônio de agregação em período de inverno. Foram utilizados dois campos experimentais no município de Casa Branca, SP. em cada um destes, foram estabelecidas três áreas separadas de aproximadamente 500 metros, sempre próximas à vegetação de refúgio. Cada área foi dividida em três sub-áreas ou blocos de 100 m² para receber a aplicação do feromônio (2,5 g por bloco). Foi realizada uma contagem de bicudos adultos no solo antes, e mais cinco após a aplicação de feromônio. em cada bloco, foram observadas dez parcelas aleatórias, para a avaliação dos bicudos. Os adultos de A. grandis foram atraídos imediatamente após a aplicação do feromônio, sendo capturados por mais de 14 dias após. O índice mais elevado de atração foi observado 24 horas após a aplicação. A utilização do feromônio de agregação durante o inverno, pode aumentar a ação reguladora exercida pelos inimigos naturais, devido ao aumento de disponibilidade de presas. Controle químico pode ser recomendado 24 horas após a aplicação de feromônio em pequenas parcelas, como uma estratégia para a supressão de adultos de Anthonomus grandis em período de entressafra.
Resumo:
Em parte das regiões onde se encontram as maiores áreas de algodão no Brasil atualmente, o índice pluviométrico está ao redor de 2.000 mm anuais, existindo risco de ocorrer lavagem do Cloreto de Mepiquat (CM) das folhas do algodoeiro antes de ser absorvido pelas plantas. O objetivo deste trabalho foi avaliar a lavagem do CM aplicado no algodoeiro por diferentes laminas de chuva simulada. Os tratamentos constaram de três doses do regulador à base de cloreto de mepiquat: 0, 15.0 e 30.0 g ha-1 e quatro lâminas de chuva simulada: 5, 10, 20 e 40 mm, mais um tratamento sem chuva. Foram utilizados vasos de 12 litros de capacidade e a cultivar Delta Opal. Os parâmetros avaliados foram: altura de plantas, número de ramos reprodutivos, massa de matéria seca, retenção de estruturas reprodutivas e área foliar. Quanto maior a intensidade de chuva ocorrida após a aplicação do regulador maior foi o comprometimento da ação do produto, que repercutiu em interferência no crescimento das plantas. Chuvas de 5.0 mm, ocorridas 90 minutos após a aplicação do cloreto de mepiquat, já causaram prejuízo na ação do produto no crescimento do algodoeiro, sendo o efeito maior com o aumento da quantidade de chuva simulada.
Resumo:
Cotton (Gossypium hirsutum var. Latifolium) was grown in nutrient media, at two K levels: 58.5 mg/K and 11.7 mg/K. Potassium deficiency (11.7 mg K/g of K) was imposed upon cotton plants at different stages of plant development. A sequence of increasing sensitivity to K deficiency among cotton plant parts was observed: leaves < bolls < roots < stems. When K deficiency symptoms are clearly visible in the leaves, all the other plant parts are already affected. Bolls are a very important component in K partitioning within the cotton plant, but K is required most by the bur itself and is not translocated to seeds or fibers. Cotton could overcome a 30 day deficiency late in the season without significant losses in lint and seed cotton yields.
Resumo:
Soil columns were produced by filling PVC tubes with a Dark Red Latosol (Acrortox, 22% of clay). A compacted layer was established at the depth of 15 cm in the columns. In the compacted layer, soil was packed to 1.13, 1.32, 1.48, and 1.82 Mg kg(-1), resulting in cone resistances of 0.18, 0.43, 1.20, and 2.50 MPa. Cotton was cropped for 30 days. Lime was applied to raise base saturation to 40, 52, and 67%. The highest base saturation caused a decrease in phosphorus (P) and zinc (Zn) concentrations in the plants. A decrease in root dry matter, length and surface area was also observed. This could be a consequence of lime induced Zn deficiency. Root growth was decreased in the compacted layer, and complete inhibition was noticed at 2.50 MPa. Once the roots got through the compacted layer, there was a growth recovery in the bottom layer of the pots. The increase in base saturation up 52% was effective in preventing a decrease in cotton root length at soil resistances to 1.20 MPa. Where the roots were shorter, there was an increase in nutrient uptake per unit of root surface area, which kept the plants well nourished, except for P.
Resumo:
Natural predation first instar larvae of the cotton leafworm (CLW) A. argillacea was studied in cotton fields in Jaboticabal, São Paulo State, Brazil, during 1986. The presence of naturally occurring arthropod predators showed a first instar larvae predation rate of 78.6 and 88.9% after 24 h and 48 h of exposure, respectively. A predator prey ratio of 1 : 1 (1 CLW key predator per 1 prey/plant) maintained a level of no more than 1 CLW small larvae per plant. The most evident arthropod predators in the studied fields were: beetles (Coleoptera: Coccinellidae), ants Pheidole sp. and Conomyrma sp.; Dermaptera Doru lineare (Eschs); Hemiptera Geocoris sp., and Orius insidiosus Say; and the spiders Theridion volubile, Chrysso pulcherrima, Misumenops sp., Chiracanthium sp., and Oxyopes salticus Hentz.
Resumo:
The effect of boron (B) on cotton growth and fruit shedding may be due not only to physiological or biochemical effects, but also to vascular tissue malformation. This experiment investigated petiole and floral peduncle anatomical alterations and growth of cotton supplied with deficient and sufficient B in nutrient solution. Cotton (Gossypium hirsutum cv. 'Delta Opal') plants were grown in solutions containing 0, 1.5, 3.0, 4.5, and 6.0 mu mol L-1 of B from 22 to 36 d after plant emergence (DAPE). From 36 to 51 DAPE, B was omitted from the nutrient solution. Petioles from young leaves and floral bud peduncles (first position of the first sympodial) were sampled and the cross-section anatomy observed under an optical microscope. The number of vascular bundles of the petiole was decreased in B-deficient plants and the xylem was disorganized. Phloem elements in the peduncle vascular cylinder of B-deficient plants did not show clear differentiation. The few xylem elements that were formed were also disorganized. Modifications caused by B deficiency may have impaired B and photosynthate translocation into new cotton growth. Boron accumulation in the shoot of B-deficient plants suggested that there was some B translocation within the plant. It could be inferred that cotton growth would be impaired by the decrease in carbohydrate translocation rather than by B deficiency in the tissue alone.
Resumo:
Toxic levels of Al and low availability of Ca have been shown to decrease root growth, which can also be affected by P availability. In the current experiment, initial plant growth and nutrition of cotton (Gossypium hirsutum var. Latifolia) were studied as related to its root growth in response to phosphorus and lime application. The experiment was conducted in Botucatu, Sao Paulo, Brazil, in pots containing a Dark Red Latosol (Acrortox, 20% clay, 72% sand). Lime was applied at 0.56, 1.12 and 1.68 g kg -1 and phosphorus was applied at 50, 100 and 150 mg kg -1. Two cotton (cv. IAC 22) plants were grown per pot for up to 42 days after plant emergence. There was no effect of liming on shoot dry weight, root dry matter yield, root surface and length, but root diameter was decreased with the increase in soil Ca. Shoot dry weight, as well as root length, surface and dry weight were increased with soil P levels up to 83 mg kg -1. Phosphorus concentration in the shoots was increased from 1.6 to 3.0 g kg -1 when soil P was increased from 14 to 34 mg kg -1. No further increases in P concentration were observed with higher P rates. The shoot/root ratio was also increased with P application as well as the amount of nutrients absorbed per unit of root surface. In low soil P soils the transport of the nutrient to the cotton root surface limits P uptake. In this case an increase in root growth rate due to P fertilisation does not compensate for the low P diffusion in the soil.
Resumo:
The knowledge of nutrient mobility is an important tool to define the best fertilizer management and diagnosis techniques. Patterns of boron (B) mobility in plants have been reviewed, but there is very little information on B distribution and mobility in cotton. An experiment was conducted to study plant growth and B distribution in cotton when the nutrient was applied in the nutrient solution or to the leaves, and when a temporary deficiency was imposed. Cotton (Gossypium hirsutum, Latifolia, cv. IAC 22) was grown in nutrient solutions where B was omitted or not for 15 days. Boron was applied to young or mature cotton leaves in some of the minus B treatments. Root growth decreased when the plants were transferred to B solutions, but there was a full recovery when B was replaced in the nutrient medium. Boron deficiency, even when temporary, reduced cotton shoot dry matter yields, plant height and flower and fruit set, and these could not be prevented by foliar application of B. Because of decreased dry matter production, leaves of deficient cotton plants actually showed higher B concentrations than non deficient leaves. This would be misleading when a mature leaf is sampled for diagnosis. If there is any B mobility in cotton phloem, it is very low.
Resumo:
This experiment was developed in order to evaluation the efficiency of pheromone to control the pink bollworm and the total time of its release in cotton field. The experiment was installed in field conditions, in Chapadao do Sul/SP/Brazil, from January to April, 1998. The treatments consisted of 2 areas, being one of 30ha, where it was applied the pheromone and another of 10ha that was chosen as control area and did not receive pheromone. In the treated area, the laboratory synthesized sex pheromone (PB-Rope) was used thought of dispensers that allowed the slow and gradual release of the active substance. A total of 250 dispenser per hectare were evenly hand distributed in the area. The dispensers were wrapped around the plants. Both areas (treated area and untreated area) were monitored by delta trap. For evaluation of the boll damage, the treatment area was divided into 4 sub-areas. Twenty five green bolls were collected at random from each sub-area at 48 and 65 days after pheromone treatment. Bolls were cracked open by hand, and number of the bolls with symptoms of pink bollworm attacks was recorded. For evaluation of the productivity four areas were demarcated in each treatment, where all fibers and seeds harvested were weighted. Release rate of pheromone from dispenser was evaluated through of the weigh of the dispensers. Were marked and weighed in analytic scale, 20 dispensers contend the pheromone, being placed 10 dispensers under the cotton plants in treated area and other 10 dispensers in an open area. To every 15 days the dispensers were retired and weighed in analytic scale and soon after put back in the field in the same places. The results showed that only one application of mating disrupt pheromone, used in a dosage of 250 dispenser/ha, reached 80% of control for pink bollworm. the release period of pheromone from dispenser, after the application, was 120 days.