910 resultados para Corticosteroid-binding Globulin
Resumo:
On the basis of serologic cross-reactivity, three immunoglobulin classes homologous to human IgG, IgM and IgA were identified in two species of acquatic mammal representing the orders Cetacea (dolphin) and Pinnipedea (sea lion). Molecular size was estimated by sucrose density gradient ultracentrifugation and Sephadex G-200 chromatography, indicating a 7S IgG, 19S IgM and heterogeneous serum IgA. Human secretory component was readily bound to the IgM of both species and to an apparently lesser extent to the larger molecular size populations of IgA. No binding was observed with IgG. Several antisera specific for human γ-chains gave a single precipitin line with the sea lion IgG but when made to react with dolphin serum produced two lines, suggesting the presence of two different subclasses of IgG in this species.
Resumo:
Exogenously added synthetic peptides can mimic endogenously produced antigenic peptides recognized on target cells by MHC class I-restricted cytolytic T lymphocytes. While it is assumed that exogenous peptides associate with class I molecules on the target cell surface, direct binding of peptides to cell-associated class I molecules has been difficult to demonstrate. Using a newly developed binding assay based on photoaffinity labeling, we have investigated the interaction of two antigenic peptides, known to be recognized in the context of H-2Kd or H-2Db, respectively, with 20 distinct class I alleles on living cells. None of the class I alleles tested, with the exception of H-2Kd or H-2Db, bound either of the peptides, thus demonstrating the exquisite specificity of peptide binding to class I molecules. Moreover, peptide binding to cell-associated H-2Kd was drastically reduced when metabolic energy, de novo protein synthesis or protein egress from the endoplasmic reticulum was inhibited. It is thus likely that exogenously added peptides do not associate with the bulk of class I molecules expressed at the cell surface, but rather bind to short-lived molecules devoid of endogenous peptides.
Resumo:
The new angiotensin-converting enzyme (ACE) inhibitor idrapril acts by binding the catalytically important zinc ion to a hydroxamic group. We investigated its pharmacodynamic and pharmacokinetic properties in 8 healthy men: Increasing doses of 1, 5, and 25 mg idrapril as well as placebo or 5 mg captopril were administered intravenously (i.v.) at 1-week intervals. Six of the subjects received 100 mg idrapril orally (p.o.) last, and two ingested oral placebo as a double-blind control. Blood pressure (BP) and heart rate (HR) remained unchanged. No serious side effects were observed. ACE inhibition in vivo was evaluated by changes in the ratio of specifically measured plasma angiotensin II (AngII) and AngI concentrations determined by high-performance liquid chromatography/radioimmunoassay (HPLC/RIA) techniques. Plasma ACE activity in vitro was estimated by radioenzymatic assay; it was suppressed by > or = 93% at 15 min after injection of 25 mg idrapril or 5 mg captopril and by 96% 2 h after idrapril intake. Mean AngII levels were decreased dose dependently at 15 min after idrapril injections. At the same time, plasma renin activity (PRA) and AngI increased according to the doses. The AngII/AngI ratio was clearly related to plasma idrapril levels (r = -0.88, n = 60). Oral idrapril inhibited ACE maximally at 1-4 h after dosing, when < 7% of initial ACE activity was observed in vitro and in vivo. Idrapril is a safe and efficient ACE inhibitor in human subjects. It is well absorbed orally. Besides having a slightly slower onset of action, idrapril has pharmacodynamic effects comparable to those of captopril.
Resumo:
Conformational changes of channel activation: Five enhanced green fluorescent protein (EGFP) molecules (green cylinders) were integrated into the intracellular part of the homopentameric ionotropic 5-HT3 receptor. This allowed the detection of extracellular binding of fluorescent ligands (?) to EGFP by FRET, and also enabled the quantification of agonist-induced conformational changes in the intracellular region of the receptor by homo-FRET between EGFPs. The approach opens novel ways for probing receptor activation and functional screening of therapeutic compounds.
Resumo:
RDM1 (RAD52 Motif 1) is a vertebrate protein involved in the cellular response to the anti-cancer drug cisplatin. In addition to an RNA recognition motif, RDM1 contains a small amino acid motif, named RD motif, which it shares with the recombination and repair protein, RAD52. RDM1 binds to single- and double-stranded DNA, and recognizes DNA distortions induced by cisplatin adducts in vitro. Here, we have performed an in-depth analysis of the nucleic acid-binding properties of RDM1 using gel-shift assays and electron microscopy. We show that RDM1 possesses acidic pH-dependent DNA-binding activity and that it binds RNA as well as DNA, and we present evidence from competition gel-shift experiments that RDM1 may be capable of discrimination between the two nucleic acids. Based on reported studies of RAD52, we have generated an RDM1 variant mutated in its RD motif. We find that the L119GF --> AAA mutation affects the mode of RDM1 binding to single-stranded DNA.
Resumo:
Liver fatty-acid-binding protein (L-FABP) is a cytoplasmic polypeptide that binds with strong affinity especially to long-chain fatty acids (LCFAs). It is highly expressed in both the liver and small intestine, where it is thought to have an essential role in the control of the cellular fatty acid (FA) flux. Because expression of the gene encoding L-FABP is increased by both fibrate hypolipidaemic drugs and LCFAs, it seems to be under the control of transcription factors, termed peroxisome-proliferator-activated receptors (PPARs), activated by fibrate or FAs. However, the precise molecular mechanism by which these regulations take place remain to be fully substantiated. Using transfection assays, we found that the different PPAR subtypes (alpha, gamma and delta) are able to mediate the up-regulation by FAs of the gene encoding L-FABP in vitro. Through analysis of LCFA- and fibrate-mediated effects on L-FABP mRNA levels in wild-type and PPARalpha-null mice, we have found that PPARalpha in the intestine does not constitute a dominant regulator of L-FABP gene expression, in contrast with what is known in the liver. Only the PPARdelta/alpha agonist GW2433 is able to up-regulate the gene encoding L-FABP in the intestine of PPARalpha-null mice. These findings demonstrate that PPARdelta can act as a fibrate/FA-activated receptor in tissues in which it is highly expressed and that L-FABP is a PPARdelta target gene in the small intestine. We propose that PPARdelta contributes to metabolic adaptation of the small intestine to changes in the lipid content of the diet.
Resumo:
AIMS/HYPOTHESIS: Chronic exposure of pancreatic beta cells to proinflammatory cytokines leads to impaired insulin secretion and apoptosis. ARE/poly(U)-binding factor 1 (AUF1) belongs to a protein family that controls mRNA stability and translation by associating with adenosine- and uridine-rich regions of target messengers. We investigated the involvement of AUF1 in cytokine-induced beta cell dysfunction. METHODS: Production and subcellular distribution of AUF1 isoforms were analysed by western blotting. To test for their role in the control of beta cell functions, each isoform was overproduced individually in insulin-secreting cells. The contribution to cytokine-mediated beta cell dysfunction was evaluated by preventing the production of AUF1 isoforms by RNA interference. The effect of AUF1 on the production of potential targets was assessed by western blotting. RESULTS: MIN6 cells and human pancreatic islets were found to produce four AUF1 isoforms (p42>p45>p37>p40). AUF1 isoforms were mainly localised in the nucleus but were partially translocated to the cytoplasm upon exposure of beta cells to cytokines and activation of the ERK pathway. Overproduction of AUF1 did not affect glucose-induced insulin secretion but promoted apoptosis. This effect was associated with a decrease in the production of the anti-apoptotic proteins, B cell leukaemia/lymphoma 2 (BCL2) and myeloid cell leukaemia sequence 1 (MCL1). Silencing of AUF1 isoforms restored the levels of the anti-apoptotic proteins, attenuated the activation of the nuclear factor-κB (NFκB) pathway, and protected the beta cells from cytokine-induced apoptosis. CONCLUSIONS/INTERPRETATION: Our findings point to a contribution of AUF1 to the deleterious effects of cytokines on beta cell functions and suggest a role for this RNA-binding protein in the early phases of type 1 diabetes.
Resumo:
Wild type and mutant toxins of Bacillus thuringiensis delta-endotoxins were examined for their binding to midgut brush border membrane vesicles (BBMV). CryIAa, CryIAb, and CryIAc were examined for their binding to Gypsy moth (Lymantria dispar) BBMV. The binding of CryIAa and CryIAc was directly correlated with their toxicity, while CryIAb was observed to have lower binding than expected from its toxicity. The latter observation confirms the observation of Wolfersberger (1990). The "rule" of reciprocity of binding and toxicity is apparently obeyed by CryIAa and CryIAc, but broken by CryIAb on L. dispar. Alanine substitutions were made in several positions of the putative loops of CryIAa to test the hypothesis that the loops are intimately involved in binding to the receptor. The mutant toxins showed minor shifts in heterologous binding to Bombyx mori BBMV, but not enough to conclude that the residues chosen play critical roles in receptor binding.
Resumo:
Vaccines in schistosomiasis using homologous antigens have been studied extensively in experimentally infected mammalian hosts. Vaccines using heterologous antigens have received comparatively less attention. This review summarizes recent work on a heterologous 12 kDa Fasciola hepatica antigenic polypeptide which cross reacts with Schistosoma mansoni. A cDNA has been cloned and sequenced, and the predicted amino acid sequence of the recombinant protein has been shown to have significant (44) identity with a 14 kDa S. mansoni fatty acid binding protein. Thus in the parasitic trematodes fatty acid binding proteins may be potential vaccine candidates. The F. hepatica recombinant protein has been overexpressed and purified and denoted rFh15. Preliminary rFh15 migrates more slowly (i.e. may be slightly larger) than nFh12 on SDS-PAGE and has a predicted pI of 6.01 vs. observed pI of 5.45. Mice infected with F. hepatica develop antibodies to nFh12 by 2 weeks of infection vs. 6 weeks of infection to rFh15; on the other hand, mice with schistosomiasis mansoni develop antibodies to both nFh12 and rFh15 by 6 weeks of infection. Both the F. hepatica and S. mansoni cross-reactive antigens may be cross-protective antigens with the protection inducing capability against both species.
Resumo:
Vaccinal and wild strains of Newcastle Disease virus (NDV) were analyzed for cell receptor binding and fusogenic biological properties associated with their HN (hemagglutinin-neuraminidase) and F (fusion protein) surface structures respectively. The evaluation of the biological activities of HN and F was carried out respectively by determination of hemagglutinating titers and hemolysis percentages, using erythrocytes from various animal origins at different pH values. Significant differences in hemagglutination titers for some strains of NDV were detected, when interacting with goose, sheep, guinea-pip and human "O" group erythrocytes at neutral pH. Diversity of hemolysis percentagens was observed between different NDV strains at acid pH. These analysis were developed to evaluate particular aspects of the actual influence of the receptor specifity and pH on the receptor binding and fusogenic processes of Newcastle Disease viruses.
Resumo:
To characterize antibody binding to a panel of V3 loop peptides representing diverse HIV-1 neutralization epitopes, 149 HIV-1 infected individuals from Rio de Janeiro (RJ) were investigated. Results were analyzed with respect to risk factors for infection and other epidemiological and clinical data. Peptide reactivity was not associated with sex, clinical status, CD4 counts, antigenemia or ß2-microglobulin serum level. A segregation of peptide reactivity according to route of infection was encountered. This finding suggests that more then one viral strain may be circulating in RJ, in subjects with different risk factors for HIV-1 infection. An investigation of prevalent HIV-1 genotypes, serotypes and immunotypes may be of importance for the design and selection of potential vaccines to be used in Brazil as well as for the selection of populations to be included in future vaccine efficacy trials.
Resumo:
STAT transcription factors are expressed in many cell types and bind to similar sequences. However, different STAT gene knock-outs show very distinct phenotypes. To determine whether differences between the binding specificities of STAT proteins account for these effects, we compared the sequences bound by STAT1, STAT5A, STAT5B, and STAT6. One sequence set was selected from random oligonucleotides by recombinant STAT1, STAT5A, or STAT6. For another set including many weak binding sites, we quantified the relative affinities to STAT1, STAT5A, STAT5B, and STAT6. We compared the results to the binding sites in natural STAT target genes identified by others. The experiments confirmed the similar specificity of different STAT proteins. Detailed analysis indicated that STAT5A specificity is more similar to that of STAT6 than that of STAT1, as expected from the evolutionary relationships. The preference of STAT6 for sites in which the half-palindromes (TTC) are separated by four nucleotides (N(4)) was confirmed, but analysis of weak binding sites showed that STAT6 binds fairly well to N(3) sites. As previously reported, STAT1 and STAT5 prefer N(3) sites; however, STAT5A, but not STAT1, weakly binds N(4) sites. None of the STATs bound to half-palindromes. There were no specificity differences between STAT5A and STAT5B.
Resumo:
The carbohydrate-binding specificity of lectins from the seeds of Canavalia maritima and Dioclea grandiflora was studied by hapten-inhibition of haemagglutination using various sugars and sugar derivatives as inhibitors, including N-acetylneuraminic acid and N-acetylmuramic acid. Despite some discrepancies, both lectins exhibited a very similar carbohydrate-binding specificity as previously reported for other lectins from Diocleinae (tribe Phaseoleae, sub-tribe Diocleinae). Accordingly, both lectins exhibited almost identical hydropathic profiles and their three-dimensional models built up from the atomic coordinates of ConA looked very similar. However, docking experiments of glucose and mannose in their monosaccharide-binding sites, by comparison with the ConA-mannose complex used as a model, revealed conformational changes in side chains of the amino acid residues involved in the binding of monosaccharides. These results fully agree with crystallographic data showing that binding of specific ligands to ConA requires conformational chances of its monosaccharide-binding site.
Resumo:
Eosinophils, along with mast cells are key cells involved in the innate immune response against parasitic infection whereas the adaptive immune response is largely dependent on lymphocytes. In chronic parasitic disease and in chronic allergic disease, IL-5 is predominantly a T cell derived cytokine which is particularly important for the terminal differentiation, activation and survival of committed eosinophil precursors. The human IL-5 gene is located on chromosome 5 in a gene cluster that contains the evolutionary related IL-4 family of cytokine genes. The human IL-5 receptor complex is a heterodimer consisting of a unique a subunit (predominantly expressed on eosinophils) and a beta subunit which is shared between the receptors for IL-3 & GM-CSF (more widely expressed). The a subunit is required for ligand-specific binding whereas association with the beta subunit results in increased binding affinity. The alternative splicing of the alphaIL-5R gene which contains 14 exons can yield several alphaIL-5R isoforms including a membrane-anchored isoform (alphaIL-5Rm) and a soluble isoform (alphaIL-5Rs). Cytokines such as IL-5 produce specific and non-specific cellular responses through specific cell membrane receptor mediated activation of intracellular signal transduction pathways which, to a large part, regulate gene expression. The major intracellular signal transduction mechanism is activation of non-receptor associated tyrosine kinases including JAK and MAP kinases which can then transduce signals via a novel family of transcriptional factors named signal transducers and activators of transcription (STATS). JAK2, STAT1 and STAT 5 appear to be particularly important in IL-5 mediated eosinophil responses. Asthma is characterized by episodic airways obstruction, increased bronchial responsiveness, and airway inflammation. Several studies have shown an association between the number of activated T cells and eosinophils in the airways and abnormalities in FEV1, airway reactivity and clinical severity in asthma. It has now been well documented that IL-5 is highly expressed in the bronchial mucosa of atopic and intrinsic asthmatics and that the increased IL-5 mRNA present in airway tissues is predominantly T cell derived. Immunocytochemical staining of bronchial biopsy sections has confirmed that IL-5 mRNA transcripts are translated into protein in asthmatic subjects. Furthermore, the number of activated CD 4 + T cells and IL-5 mRNA positive cells are increased in asthmatic airways following antigen challenge and studies that have examined IL-5 expression in asthmatic subjects before and after steroids have shown significantly decreased expression following oral corticosteroid treatment in steroid-sensitive asthma but not in steroid resistant and chronic severe steroid dependent asthma. The link between T cell derived IL-5 and eosinophil activation in asthmatic airways is further strengthened by the demonstration that there is an increased number of alphaIL-5R mRNA positive cells in the bronchial biopsies of atopic and non-atopic asthmatic subjects and that the eosinophil is the predominant site of this increased alphaIL-5R mRNA expression. We have also shown that the subset of activated eosinophils that expressed mRNA for membrane bound alpha IL5r inversely correlated with FEV1, whereas the subset of activated eosinophils that expressed mRNA for soluble alphaIL5r directly correlated with FEV1. Hence, not only does this data suggest that the presence of eosinophils expressing alphaIL-5R mRNA contribute towards the pathogenesis of bronchial asthma, but also that the eosinophil phenotype with respect to alphaIL-5R isoform expression is of central importance. Finally, there are several animal, and more recently in vitro lung explant, models of allergen induced eosinophilia, late airway responses(LARS), and bronchial hyperresponsiveness(BHR) - all of which support a link between IL-5 and airway eosinophila and bronchial hyperresponsiveness. The most direct demonstration of T cell involvement in LARS is the finding that these physiological responses can be transferred by CD4+ but not CD8+ T cells in rats. The importance of IL-5 in animal models of allergen induced bronchial hyperresponsiveness has been further demonstrated by a number of studies which have indicated that IL-5 administration is able to induce late phase responses and BHR and that anti-IL-5 antibody can block allergen induced late phase responses and BHR. In summary, activated T lymphocytes, IL5 production and eosinophil activation are particularly important in the asthmatic response. Human studies in asthma and studies in allergic animal models have clearly emphasised the unique role of IL-5 in linking T lymphocytes and adaptive immunity, the eosinophil effector cell, and the asthma phenotype. The central role of activated lymphocytes and eosinophils in asthma would argue for the likely therapeutic success of strategies to block T cell and eosinophil activation (eg steroids). Importantly, more targeted therapies may avoid the complications associated with steroids. Such therapies could target key T cell activation proteins and cytokines by various means including blocking antibodies (eg anti-CD4, anti-CD40, anti-IL-5 etc), antisense oligonucleotides to their specific mRNAs, and/or selective inhibition of the promoter sites for these genes. Another option would be to target key eosinophil activation mechanisms including the aIL5r. As always, the risk to benefit ratio of such strategies await the results of well conducted clinical trials.