1000 resultados para Copepoda -- behavior
Resumo:
A novel manganese phosphite-oxalate, [C2N2H10][Mn-2(II)(OH2)(2)(HPO3)(2)(C2O4)] has been hydothermally synthesized and its structure determined by single-crystal X-ray diffraction. The structure consists of neutral manganese phosphite layers, [Mn(HPO3)](infinity), formed by MnO6 octahedra and HPO3 units, cross-linked by the oxalate moieties. The organic cations occupy the middle of the 8-membered one dimensional channels. Magnetic studies indicate weak antiferromagnetic interactions between the Mn2+ ions. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Pack ice is an aggregate of ice floes drifting on the sea surface. The forces controlling the motion and deformation of pack ice are air and water drag forces, sea surface tilt, Coriolis force and the internal force due to the interaction between ice floes. In this thesis, the mechanical behavior of compacted pack ice is investigated using theoretical and numerical methods, focusing on the three basic material properties: compressive strength, yield curve and flow rule. A high-resolution three-category sea ice model is applied to investigate the sea ice dynamics in two small basins, the whole Gulf Riga and the inside Pärnu Bay, focusing on the calibration of the compressive strength for thin ice. These two basins are on the scales of 100 km and 20 km, respectively, with typical ice thickness of 10-30 cm. The model is found capable of capturing the main characteristics of the ice dynamics. The compressive strength is calibrated to be about 30 kPa, consistent with the values from most large-scale sea ice dynamic studies. In addition, the numerical study in Pärnu Bay suggests that the shear strength drops significantly when the ice-floe size markedly decreases. A characteristic inversion method is developed to probe the yield curve of compacted pack ice. The basis of this method is the relationship between the intersection angle of linear kinematic features (LKFs) in sea ice and the slope of the yield curve. A summary of the observed LKFs shows that they can be basically divided into three groups: intersecting leads, uniaxial opening leads and uniaxial pressure ridges. Based on the available observed angles, the yield curve is determined to be a curved diamond. Comparisons of this yield curve with those from other methods show that it possesses almost all the advantages identified by the other methods. A new constitutive law is proposed, where the yield curve is a diamond and the flow rule is a combination of the normal and co-axial flow rule. The non-normal co-axial flow rule is necessary for the Coulombic yield constraint. This constitutive law not only captures the main features of forming LKFs but also takes the advantage of avoiding overestimating divergence during shear deformation. Moreover, this study provides a method for observing the flow rule for pack ice during deformation.
Resumo:
Studies on the electrical switching behavior of melt quenched bulk Si15Te85-xSbx glasses have been undertaken in the composition range (1 <= x <= 10), in order to understand the effect of Sb addition on the electrical switching behavior of Si15Te85-x base glass. It has been observed that all the Si15Te85-xSbx glasses studied exhibit a smooth memory type switching. Further, the switching voltages are found to decrease almost linearly with Sb content, which indicates that the metallicity of the dopant plays a dominant role in this system compared to network connectivity/rigidity. The thickness dependence of switching voltage (V-th) indicates a clear thermal origin for the switching mechanism. The temperature variation of switching voltages reveals that the Si15Te85-xSbx glasses studied have a moderate thermal stability. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We report the fabrication of La0.7Ca0.3MnO3 nanotubes (LCMONTs) with a diameter of about 200 nm, by a modified sol-gel method utilizing nanochannel alumina templates. High resolution transmission electron microscopy confirmed that the obtained LCMONTs are made up of nanoparticles (8-12 nm), which are randomly aligned in the wall of the nanotubes. The strong irreversibility between zero field cooling (ZFC) and field cooling (FC) magnetization curves as well as a cusplike peak in the ZFC curve gives strong support for surface spin glass behavior.
Resumo:
The mechanical properties of amorphous alloys have proven both scientifically unique and of potential practical interest, although the underlying deformation physics of these materials remain less firmly established as compared with crystalline alloys. In this article, we review recent advances in understanding the mechanical behavior of metallic glasses, with particular emphasis on the deformation and fracture mechanisms. Atomistic as well as continuum modeling and experimental work on elasticity, plastic flow and localization, fracture and fatigue are all discussed, and theoretical developments are connected, where possible, with macroscopic experimental responses. The role of glass structure on mechanical properties, and conversely, the effect of deformation upon glass structure, are also described. The mechanical properties of metallic glass-derivative materials – including in situ and ex situ composites, foams and nanocrystal-reinforced glasses – are reviewed as well. Finally, we identify a number of important unresolved issues for the field.
Resumo:
Monophasic BaLaxBi4-xTi4O15 (x = 0, 0.2, 0.4, 0.6 and 0.8) ceramics, fabricated from the powders synthesized via the solid-state reaction route exhibited relaxor behavior. Dielectric properties of the well sintered ceramics were measured in a wide frequency range (1 kHz-1 MHz) at different temperatures (300-750 K). The temperature of dielectri maximum (T-m) was found to decrease significantly from 696 K for an undoped sample (x = 0) to 395 K for the sample corresponding to the composition x = 0.8 accompanied by a decrease in the magnitude ofdielectric maximum (epsilon(m)). The temperature variation of the dielectric constant on the high temperature slope of the peak (T > T-m) was analyzed by using the Lorentz-ype quadratic law and the diffuseness of the peak was found to increase with increasing x. Vogel-Fulcher modelling of dielectric relaxation showed a decrease in freezing temperature (T-VF) (from 678 to 340 K) and an increase in the activation energy (5 to 24 meV) for the frequency dispersion with increase in x (La-3 divided by content). Strength of frequency dispersion of the phase transition increased with lanthanum content. Polarization (P)-electric field (E) hysteresis loops recorded at 373 showed a transition from a nearly squarish to slim loop hysteresis behavior with increasing lanthanum content.
Resumo:
The required professional and ethical pronouncements of accountants mean that auditors need to be competent and exercise due care and skill in the performance of their audits. In this study, we examine what happens when auditors take on more clients than they should, thus raising doubts about their ability to maintain competence and audit quality. Using 2803 observations of Malaysian companies from 2010 to 2013, we find that auditors with multiple clients are associated with lower earnings quality, proxied by total accruals and discretionary accruals. Our results demonstrate that associating client firms’ reported discretionary accruals with individual auditors, rather than their firms or offices, is important in determining audit quality. Moreover, we demonstrate that the disclosure of auditors’ signatures on their reports is useful for assessing auditor quality at the individual level, thus contributing to the debate on the usefulness of having auditor identities on reports.
Resumo:
This paper describes a concept for a collision avoidance system for ships, which is based on model predictive control. A finite set of alternative control behaviors are generated by varying two parameters: offsets to the guidance course angle commanded to the autopilot and changes to the propulsion command ranging from nominal speed to full reverse. Using simulated predictions of the trajectories of the obstacles and ship, compliance with the Convention on the International Regulations for Preventing Collisions at Sea and collision hazards associated with each of the alternative control behaviors are evaluated on a finite prediction horizon, and the optimal control behavior is selected. Robustness to sensing error, predicted obstacle behavior, and environmental conditions can be ensured by evaluating multiple scenarios for each control behavior. The method is conceptually and computationally simple and yet quite versatile as it can account for the dynamics of the ship, the dynamics of the steering and propulsion system, forces due to wind and ocean current, and any number of obstacles. Simulations show that the method is effective and can manage complex scenarios with multiple dynamic obstacles and uncertainty associated with sensors and predictions.
Resumo:
We have characterized the phase behavior of mixtures of the cationic surfactant cetyltrimethylammonium bromide (CTAB) and the organic salt 3-sodium-2-hydroxy naphthoate (SHN) over a wide range of surfactant concentrations using polarizing optical microscopy and X-ray diffraction. A variety of liquid crystalline phases, such as hexagonal, lamellar with and without curvature defects, and nematic, are observed in these mixtures. At high temperatures the curvature defects in the lamellar phase are annealed gradually on decreasing the water content. However, at lower temperatures these two lamellar structures are separated by an intermediate phase, where the bilayer defects appear to order into a lattice. The ternary phase diagram shows a high degree of symmetry about the line corresponding to equimolar CTAB/SHN composition, as in the case of mixtures of cationic and anionic surfactants.
Resumo:
The layered double hydroxides (LDHs) of Co with trivalent cations decompose irreversibly to yield oxides with the spinel structure. Spinel formation is aided by the oxidation of Co(II) to Co(III) in the ambient atmosphere. When the decomposition is carried out under N-2, the oxidation of Co(II) is suppressed, and the resulting oxide has the rock salt structure. Thus, the Co-Al-CO32-/Cl- LDHs yield oxides of the type Co1- Al-x(2x/3)rectangle O-x/3, which are highly metastable, given the large defect concentration. This defect oxide rapidly reverts back to the original hydroxide on soaking in a Na2CO3 solution. Interlayer NO3- anions, on the other hand, decompose generating a highly oxidizing atmosphere, whereby the Co-Al-NO3- LDH decomposes to form the spinel phase even in a N-2 atmosphere. The oxide with the defect rock salt structure formed by the thermal decomposition of the Co-Fe-CO32- LDH under N2, on soaking in a Na2CO3 solution, follows a different kinetic pathway and undergoes a solution transformation into the inverse spinel Co(Co, Fe)(2)O-4. Fe3+ has a low octahedral crystal field stabilization energy and therefore prefers the tetrahedral coordination offered by the structure of the inverse spinel rather than the octahedral coordination of the parent LDH. Similar considerations do not hold in the case of Ga- and In-containing LDHs, given the considerable barriers to the diffusion of M3+ (M=Ga, In) from octahedral to tetrahedral sites owing to their large size. Consequently, the In-containing oxide residue reverts back to the parent hydroxide, whereas this reconstruction is partial in the case of the Ga-containing oxide. These studies show that the reversible thermal behavior offers a competing kinetic pathway to spinel formation. Suppression of the latter induces the reversible behavior in an LDH that otherwise decomposes irreversibly to the spinel.
Resumo:
Partition ratios and M50 values of different carotenoids in hexaneaqueous methanol were determined. Mercuric chloride complexes of 14 epoxy carotenoids were prepared and their absorption maxima in acetone were estimated. The difference in chromatographic behavior of carotenoid epoxides on alumina and magnesium oxide-Celite columns is discussed. It is shown that the magnesium oxide-Celite column behaves as a reverse-phase chromatographic column to alumina column.
Resumo:
The thermal degradation behavior of banana fiber and polypropylene/banana fiber composites has been studied by thermogravimetric analysis. Banana fiber was found to be decomposing in two stages, first one around 320 degrees C and the second one around 450 degrees C. For chemically treated banana fiber, the decomposition process has been at a higher temperature, indicating thermal stability for the treated fiber. Activation energies for thermal degradation were estimated using Coats and Redfern method. Calorific value of the banana fiber was measured using a constant volume isothermal bomb calorimeter. rystallization studies exhibited an increase in the crystallization temperature and crystallinity of polypropylene upon the addition of banana fiber. POLYM. COMPOS., 31:1113-1123, 2010. (C) 2009 Society of Plastics Engineers.
Resumo:
Major advances in the treatment of preterm infants have occurred during the last three decades. Survival rates have increased, and the first generations of preterm infants born at very low birth weight (VLBW; less than 1500 g) who profited from modern neonatal intensive care are now in young adulthood. The literature shows that VLBW children achieve on average lower scores on cognitive tests, even after exclusion of individuals with obvious neurosensory deficits. Evidence also exists for an increased risk in VLBW children for various neuropsychiatric disorders such as attention-deficit hyperactivity disorder (ADHD) and related behavioral symptoms. Up till now, studies extending into adulthood are sparse, and it remains to be seen whether these problems persist into adulthood. The aim of this thesis was to study ADHD-related symptoms and cognitive and executive functioning in young adults born at VLBW. In addition, we aimed to study sleep disturbances, known to adversely affect both cognition and attention. We hypothesized that preterm birth at VLBW interferes with early brain development in a way that alters the neuropsychological phenotype; this may manifest itself as ADHD symptoms and impaired cognitive abilities in young adulthood. In this cohort study from a geographically defined region, we studied 166 VLBW adults and 172 term-born controls born from 1978 through 1985. At ages 18 to 27 years, the study participants took part in a clinic study during which their physical and psychological health was assessed in detail. Three years later, 213 of these individuals participated in a follow-up. The current study is part of a larger research project (The Helsinki Study of Very Low Birth Weight Adults), and the measurements of interest for this particular study include the following: 1) The Adult Problem Questionnaire (APQ), a self-rating scale of ADHD-related symptoms in adults; 2) A computerized cognitive test battery designed for population studies (CogState®) which measures core cognitive abilities such as reaction time, working memory, and visual learning; 3) Sleep assessment by actigraphy, the Basic Nordic Sleep Questionnaire, and the Morningness-Eveningness Questionnaire. Actigraphs are wrist-worn accelerometers that separate sleep from wakefulness by registering body movements. Contrary to expectations, VLBW adults as a group reported no more ADHD-related behavioral symptoms than did controls. Further subdivision of the VLBW group into SGA (small for gestational age) and AGA (appropriate for gestational age) subgroups, however, revealed more symptoms on ADHD subscales pertaining to executive dysfunction and emotional instability among those born SGA. Thus, it seems that intrauterine growth retardation (for which SGA served as a proxy) is a more essential predictor for self-perceived ADHD symptoms in adulthood than is VLBW birth as such. In line with observations from other cohorts, the VLBW adults reported less risk-taking behavior in terms of substance use (alcohol, smoking, and recreational drugs), a finding reassuring for the VLBW individuals and their families. On the cognitive test, VLBW adults free from neurosensory deficits had longer reaction times than did term-born peers on all tasks included in the test battery, and lower accuracy on the learning task, with no discernible effect of SGA status over and above the effect of VLBW. Altogether, on a group level, even high-functioning VLBW adults show subtle deficits in psychomotor processing speed, visual working memory, and learning abilities. The sleep studies provided no evidence for differences in sleep quality or duration between the two groups. The VLBW adults were, however, at more than two-fold higher risk for sleep-disordered breathing (in terms of chronic snoring). Given the link between sleep-disordered breathing and health sequelae, these results suggest that VLBW individuals may benefit from an increased awareness among clinicians of this potential problem area. An unexpected finding from the sleep studies was the suggestion of an advanced sleep phase: The VLBW adults went to bed earlier according to the actigraphy registrations and also reported earlier wake-up times on the questionnaire. In further study of this issue in conjunction with the follow-up three years later, the VLBW group reported higher levels of morningness propensity, further corroborating the preliminary findings of an advanced sleep phase. Although the clinical implications are not entirely clear, the issue may be worth further study, since circadian rhythms are closely related to health and well-being. In sum, we believe that increased understanding of long-term outcomes after VLBW, and identification of areas and subgroups that are particularly vulnerable, will allow earlier recognition of potential problems and ultimately lead to improved prevention strategies.