993 resultados para Converter DC-AC


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a single stage converter for a high bandwidth and a high efficiency envelope amplifier. The current ripple cancellation technique is applied to a synchronous buck converter to cancel the output current ripple and to decrease the switching frequency without a reduction in the large signal bandwidth. The converter is modeled and the new design with ripple cancellation circuit is detailed. The advantages of the proposed design are presented and validated experimentally. The transfer function of the output filter of the buck converter with ripple cancellation circuit has been modeled and compared to measurements, showing a good correspondence. Experimental validation is provided at 4MHz of switching frequency for DC and variable output voltage for a sinusoidal and a 64QAM signal. Additional experimental validation of the efficiency improvement is provided, compared to the equivalent design (same bandwidth and output voltage ripple) of the conventional buck converter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of techniques such as envelope tracking (ET) and envelope elimination and restoration (EER) can improve the efficiency of radio frequency power amplifiers (RFPA). In both cases, high-bandwidth DC/DC converters called envelope amplifiers (EA) are used to modulate the supply voltage of the RFPA. This paper addresses the analysis and design of a modified two-phase Buck converter optimized to operate as EA. The effects of multiphase operation on the tracking capabilities are analyzed. The use of a fourth-order output filter is proposed to increase the attenuation of the harmonics generated by the PWM operation, thus allowing a reduction of the ratio between the switching frequency and the converter bandwidth. The design of the output filter is addressed considering envelope tracking accuracy and distortion caused by the side bands arising from the nonlinear modulation process. Finally, the proposed analysis and design methods are supported by simulation results, as well as demonstrated by experiments obtained using two 100-W, 10-MHz, two-phase Buck EAs capable of accurately tracking a 1.5-MHz bandwidth OFDM signal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El desarrollo da las nuevas tecnologas permite a los ingenieros llevar al lmite el funcionamiento de los circuitos integrados (Integrated Circuits, IC). Las nuevas generaciones de procesadores, DSPs o FPGAs son capaces de procesar la informacin a una alta velocidad, con un alto consumo de energa, o esperar en modo de baja potencia con el mnimo consumo posible. Esta gran variacin en el consumo de potencia y el corto tiempo necesario para cambiar de un nivel al otro, afecta a las especificaciones del Mdulo de Regulador de Tensin (Voltage Regulated Module, VRM) que alimenta al IC. Adems, las caractersticas adicionales obligatorias, tales como adaptacin del nivel de tensin (Adaptive Voltage Positioning, AVP) y escalado dinmico de la tensin (Dynamic Voltage Scaling, DVS), imponen requisitos opuestas en el diseo de la etapa de potencia del VRM. Para poder soportar las altas variaciones de los escalones de carga, el condensador de filtro de salida del VRM se ha de sobredimensionar, penalizando la densidad de energa y el rendimiento durante la operacin de DVS. Por tanto, las actuales tendencias de investigacin se centran en mejorar la respuesta dinmica del VRM, mientras se reduce el tamao del condensador de salida. La reduccin del condensador de salida lleva a menor coste y una prolongacin de la vida del sistema ya que se podra evitar el uso de condensadores voluminosos, normalmente implementados con condensadores OSCON. Una ventaja adicional es que reduciendo el condensador de salida, el DVS se puede realizar ms rpido y con menor estrs de la etapa de potencia, ya que la cantidad de carga necesaria para cambiar la tensin de salida es menor. El comportamiento dinmico del sistema con un control lineal (Control Modo Tensin, VMC, o Control Corriente de Pico, Peak Current Mode Control, PCMC,) est limitado por la frecuencia de conmutacin del convertidor y por el tamao del filtro de salida. La reduccin del condensador de salida se puede lograr incrementando la frecuencia de conmutacin, as como incrementando el ancho de banda del sistema, y/o aplicando controles avanzados no-lineales. Usando esos controles, las variables del estado se saturan para conseguir el nuevo rgimen permanente en un tiempo mnimo, as como el filtro de salida, ms especficamente la pendiente de la corriente de la bobina, define la respuesta de la tensin de salida. Por tanto, reduciendo la inductancia de la bobina de salida, la corriente de bobina llega ms rpido al nuevo rgimen permanente, por lo que una menor cantidad de carga es tomada del condensador de salida durante el trnsito. El inconveniente de esa propuesta es que el rendimiento del sistema es penalizado debido al incremento de prdidas de conmutacin y las corrientes RMS. Para conseguir tanto la reduccin del condensador de salida como el alto rendimiento del sistema, mientras se satisfacen las estrictas especificaciones dinmicas, un convertidor multifase es adoptado como estndar para aplicaciones VRM. Para asegurar el reparto de las corrientes entre fases, el convertidor multifase se suele implementar con control de modo de corriente. Para superar la limitacin impuesta por el filtro de salida, la segunda posibilidad para reducir el condensador de salida es aplicar alguna modificacin topolgica (Topologic modifications) de la etapa bsica de potencia para incrementar la pendiente de la corriente de bobina y as reducir la duracin de trnsito. Como el transitorio se ha reducido, una menor cantidad de carga es tomada del condensador de salida bajo el mismo escaln de la corriente de salida, con lo cual, el condensador de salida se puede reducir para lograr la misma desviacin de la tensin de salida. La tercera posibilidad para reducir el condensador de salida del convertidor es introducir un camino auxiliar de energa (additional energy path, AEP) para compensar el desequilibrio de la carga del condensador de salida reduciendo consecuentemente la duracin del transitorio y la desviacin de la tensin de salida. De esta manera, durante el rgimen permanente, el sistema tiene un alto rendimiento debido a que el convertidor principal con bajo ancho de banda es diseado para trabajar con una frecuencia de conmutacin moderada para conseguir requisitos estticos. Por otro lado, el comportamiento dinmico durante los transitorios es determinado por el AEP con un alto ancho de banda. El AEP puede ser implementado como un camino resistivo, como regulador lineal (Linear regulator, LR) o como un convertidor conmutado. Las dos primeras implementaciones proveen un mayor ancho de banda, acosta del incremento de prdidas durante el transitorio. Por otro lado, la implementacin del convertidor computado presenta menor ancho de banda, limitado por la frecuencia de conmutacin, aunque produce menores prdidas comparado con las dos anteriores implementaciones. Dependiendo de la aplicacin, la implementacin y la estrategia de control del sistema, hay una variedad de soluciones propuestas en el Estado del Arte (State-of-the-Art, SoA), teniendo diferentes propiedades donde una solucin ofrece ms ventajas que las otras, pero tambin unas desventajas. En general, un sistema con AEP ideal debera tener las siguientes propiedades: 1. El impacto del AEP a las prdidas del sistema debera ser mnimo. A lo largo de la operacin, el AEP genera prdidas adicionales, con lo cual, en el caso ideal, el AEP debera trabajar por un pequeo intervalo de tiempo, solo durante los trnsitos; la otra opcin es tener el AEP constantemente activo pero, por la compensacin del rizado de la corriente de bobina, se generan prdidas innecesarias. 2. El AEP debera ser activado inmediatamente para minimizar la desviacin de la tensin de salida. Para conseguir una activacin casi instantnea, el sistema puede ser informado por la carga antes del escaln o el sistema puede observar la corriente del condensador de salida, debido a que es la primera variable del estado que acta a la perturbacin de la corriente de salida. De esa manera, el AEP es activado con casi cero error de la tensin de salida, logrando una menor desviacin de la tensin de salida. 3. El AEP debera ser desactivado una vez que el nuevo rgimen permanente es detectado para evitar los transitorios adicionales de establecimiento. La mayora de las soluciones de SoA estiman la duracin del transitorio, que puede provocar un transitorio adicional si la estimacin no se ha hecho correctamente (por ejemplo, si la corriente de bobina del convertidor principal tiene un nivel superior o inferior al necesitado, el regulador lento del convertidor principal tiene que compensar esa diferencia una vez que el AEP es desactivado). Otras soluciones de SoA observan las variables de estado, asegurando que el sistema llegue al nuevo rgimen permanente, o pueden ser informadas por la carga. 4. Durante el transitorio, como mnimo un subsistema, o bien el convertidor principal o el AEP, debera operar en el lazo cerrado. Implementando un sistema en el lazo cerrado, preferiblemente el subsistema AEP por su ancho de banda elevado, se incrementa la robustez del sistema a los parsitos. Adems, el AEP puede operar con cualquier tipo de corriente de carga. Las soluciones que funcionan en el lazo abierto suelen preformar el control de balance de carga con mnimo tiempo, as reducen la duracin del transitorio y tienen un impacto menor a las prdidas del sistema. Por otro lado, esas soluciones demuestran una alta sensibilidad a las tolerancias y parsitos de los componentes. 5. El AEP debera inyectar la corriente a la salida en una manera controlada, as se reduce el riesgo de unas corrientes elevadas y potencialmente peligrosas y se incrementa la robustez del sistema bajo las perturbaciones de la tensin de entrada. Ese problema suele ser relacionado con los sistemas donde el AEP es implementado como un convertidor auxiliar. El convertidor auxiliar es diseado para una potencia baja, con lo cual, los dispositivos elegidos son de baja corriente/potencia. Si la corriente no es controlada, bajo un pico de tensin de entrada provocada por otro parte del sistema (por ejemplo, otro convertidor conectado al mismo bus), se puede llegar a un pico en la corriente auxiliar que puede causar la perturbacin de tensin de salida e incluso el fallo de los dispositivos del convertidor auxiliar. Sin embargo, cuando la corriente es controlada, usando control del pico de corriente o control con histresis, la corriente auxiliar tiene el control con prealimentacin (feed-forward) de tensin de entrada y la corriente es definida y limitada. Por otro lado, si la solucin utiliza el control de balance de carga, el sistema puede actuar de forma deficiente si la tensin de entrada tiene un valor diferente del nominal, provocando que el AEP inyecta/toma ms/menos carga que necesitada. 6. Escalabilidad del sistema a convertidores multifase. Como ya ha sido comentado anteriormente, para las aplicaciones VRM por la corriente de carga elevada, el convertidor principal suele ser implementado como multifase para distribuir las perdidas entre las fases y bajar el estrs trmico de los dispositivos. Para asegurar el reparto de las corrientes, normalmente un control de modo corriente es usado. Las soluciones de SoA que usan VMC son limitadas a la implementacin con solo una fase. Esta tesis propone un nuevo mtodo de control del flujo de energa por el AEP y el convertidor principal. El concepto propuesto se basa en la inyeccin controlada de la corriente auxiliar al nodo de salida donde la amplitud de la corriente es n-1 veces mayor que la corriente del condensador de salida con las direcciones apropiadas. De esta manera, el AEP genera un condensador virtual cuya capacidad es n veces mayor que el condensador fsico y reduce la impedancia de salida. Como el concepto propuesto reduce la impedancia de salida usando el AEP, el concepto es llamado Output Impedance Correction Circuit (OICC) concept. El concepto se desarrolla para un convertidor tipo reductor sncrono multifase con control modo de corriente CMC (incluyendo e implementacin con una fase) y puede operar con la tensin de salida constante o con AVP. Adems, el concepto es extendido a un convertidor de una fase con control modo de tensin VMC. Durante la operacin, el control de tensin de salida de convertidor principal y control de corriente del subsistema OICC estn siempre cerrados, incrementando la robustez a las tolerancias de componentes y a los parsitos del cirquito y permitiendo que el sistema se pueda enfrentar a cualquier tipo de la corriente de carga. Segn el mtodo de control propuesto, el sistema se puede encontrar en dos estados: durante el rgimen permanente, el sistema se encuentra en el estado Idle y el subsistema OICC esta desactivado. Por otro lado, durante el transitorio, el sistema se encuentra en estado Activo y el subsistema OICC est activado para reducir la impedancia de salida. El cambio entre los estados se hace de forma autnoma: el sistema entra en el estado Activo observando la corriente de condensador de salida y vuelve al estado Idle cunado el nuevo rgimen permanente es detectado, observando las variables del estado. La validacin del concepto OICC es hecha aplicndolo a un convertidor tipo reductor sncrono con dos fases y de 30W cuyo condensador de salida tiene capacidad de 140F, mientras el factor de multiplicacin n es 15, generando en el estado Activo el condensador virtual de 2.1mF. El subsistema OICC es implementado como un convertidor tipo reductor sncrono con PCMC. Comparando el funcionamiento del convertidor con y sin el OICC, los resultados demuestran que se ha logrado una reduccin de la desviacin de tensin de salida con factor 12, tanto con funcionamiento bsico como con funcionamiento AVP. Adems, los resultados son comparados con un prototipo de referencia que tiene la misma etapa de potencia y un condensador de salida fsico de 2.1mF. Los resultados demuestran que los dos sistemas tienen el mismo comportamiento dinmico. Ms aun, se ha cuantificado el impacto en las prdidas del sistema operando bajo una corriente de carga pulsante y bajo DVS. Se demuestra que el sistema con OICC mejora el rendimiento del sistema, considerando las prdidas cuando el sistema trabaja con la carga pulsante y con DVS. Por lo ltimo, el condensador de salida de sistema con OICC es mucho ms pequeo que el condensador de salida del convertidor de referencia, con lo cual, por usar el concepto OICC, la densidad de energa se incrementa. En resumen, las contribuciones principales de la tesis son: El concepto propuesto de Output Impedance Correction Circuit (OICC), El control a nivel de sistema basado en el mtodo usado para cambiar los estados de operacin, La implementacin del subsistema OICC en lazo cerrado conjunto con la implementacin del convertidor principal, La cuantificacin de las perdidas dinmicas bajo la carga pulsante y bajo la operacin DVS, y La robustez del sistema bajo la variacin del condensador de salida y bajo los escalones de carga consecutiva. ABSTRACT Development of new technologies allows engineers to push the performance of the integrated circuits to its limits. New generations of processors, DSPs or FPGAs are able to process information with high speed and high consumption or to wait in low power mode with minimum possible consumption. This huge variation in power consumption and the short time needed to change from one level to another, affect the specifications of the Voltage Regulated Module (VRM) that supplies the IC. Furthermore, additional mandatory features, such as Adaptive Voltage Positioning (AVP) and Dynamic Voltage Scaling (DVS), impose opposite trends on the design of the VRM power stage. In order to cope with high load-step amplitudes, the output capacitor of the VRM power stage output filter is drastically oversized, penalizing power density and the efficiency during the DVS operation. Therefore, the ongoing research trend is directed to improve the dynamic response of the VRM while reducing the size of the output capacitor. The output capacitor reduction leads to a smaller cost and longer life-time of the system since the big bulk capacitors, usually implemented with OSCON capacitors, may not be needed to achieve the desired dynamic behavior. An additional advantage is that, by reducing the output capacitance, dynamic voltage scaling (DVS) can be performed faster and with smaller stress on the power stage, since the needed amount of charge to change the output voltage is smaller. The dynamic behavior of the system with a linear control (Voltage mode control, VMC, Peak Current Mode Control, PCMC,) is limited by the converter switching frequency and filter size. The reduction of the output capacitor can be achieved by increasing the switching frequency of the converter, thus increasing the bandwidth of the system, and/or by applying advanced non-linear controls. Applying nonlinear control, the system variables get saturated in order to reach the new steady-state in a minimum time, thus the output filter, more specifically the output inductor current slew-rate, determines the output voltage response. Therefore, by reducing the output inductor value, the inductor current reaches faster the new steady state, so a smaller amount of charge is taken from the output capacitor during the transient. The drawback of this approach is that the system efficiency is penalized due to increased switching losses and RMS currents. In order to achieve both the output capacitor reduction and high system efficiency, while satisfying strict dynamic specifications, a Multiphase converter system is adopted as a standard for VRM applications. In order to ensure the current sharing among the phases, the multiphase converter is usually implemented with current mode control. In order to overcome the limitation imposed by the output filter, the second possibility to reduce the output capacitor is to apply Topologic modifications of the basic power stage topology in order to increase the slew-rate of the inductor current and, therefore, reduce the transient duration. Since the transient is reduced, smaller amount of charge is taken from the output capacitor under the same load current, thus, the output capacitor can be reduced to achieve the same output voltage deviation. The third possibility to reduce the output capacitor of the converter is to introduce an additional energy path (AEP) to compensate the charge unbalance of the output capacitor, consequently reducing the transient time and output voltage deviation. Doing so, during the steady-state operation the system has high efficiency because the main low-bandwidth converter is designed to operate at moderate switching frequency, to meet the static requirements, whereas the dynamic behavior during the transients is determined by the high-bandwidth auxiliary energy path. The auxiliary energy path can be implemented as a resistive path, as a Linear regulator, LR, or as a switching converter. The first two implementations provide higher bandwidth, at the expense of increasing losses during the transient. On the other hand, the switching converter implementation presents lower bandwidth, limited by the auxiliary converter switching frequency, though it produces smaller losses compared to the two previous implementations. Depending on the application, the implementation and the control strategy of the system, there is a variety of proposed solutions in the State-of-the-Art (SoA), having different features where one solution offers some advantages over the others, but also some disadvantages. In general, an ideal additional energy path system should have the following features: 1. The impact on the system losses should be minimal. During its operation, the AEP generates additional losses, thus ideally, the AEP should operate for a short period of time, only when the transient is occurring; the other option is to have the AEP constantly on, but due to the inductor current ripple compensation at the output, unnecessary losses are generated. 2. The AEP should be activated nearly instantaneously to prevent bigger output voltage deviation. To achieve near instantaneous activation, the converter system can be informed by the load prior to the load-step or the system can observe the output capacitor current, which is the first system state variable that reacts on the load current perturbation. In this manner, the AEP is turned on with near zero output voltage error, providing smaller output voltage deviation. 3. The AEP should be deactivated once the new steady state is reached to avoid additional settling transients. Most of the SoA solutions estimate duration of the transient which may cause additional transient if the estimation is not performed correctly (e.g. if the main converter inductor current has higher or lower value than needed, the slow regulator of the main converter needs to compensate the difference after the AEP is deactivated). Other SoA solutions are observing state variables, ensuring that the system reaches the new steady state or they are informed by the load. 4. During the transient, at least one subsystem, either the main converter or the AEP, should be in closed-loop. Implementing a closed loop system, preferably the AEP subsystem, due its higher bandwidth, increases the robustness under system tolerances and circuit parasitic. In addition, the AEP can operate with any type of load. The solutions that operate in open loop usually perform minimum time charge balance control, thus reducing the transient length and minimizing the impact on the losses, however they are very sensitive to tolerances and parasitics. 5. The AEP should inject current at the output in a controlled manner, thus reducing the risk of high and potentially damaging currents and increasing robustness on the input voltage deviation. This issue is mainly related to the systems where AEP is implemented as auxiliary converter. The auxiliary converter is designed for small power and, as such, the MOSFETs are rated for small power/currents. If the current is not controlled, due to the some unpredicted spike in input voltage caused by some other part of the system (e.g. different converter), it may lead to a current spike in auxiliary current which will cause the perturbation of the output voltage and even failure of the switching components of auxiliary converter. In the case when the current is controlled, using peak CMC or Hysteretic Window CMC, the auxiliary converter has inherent feed-forwarding of the input voltage in current control and the current is defined and limited. Furthermore, if the solution employs charge balance control, the system may perform poorly if the input voltage has different value than the nominal, causing that AEP injects/extracts more/less charge than needed. 6. Scalability of the system to multiphase converters. As commented previously, in VRM applications, due to the high load currents, the main converters are implemented as multiphase to redistribute losses among the modules, lowering temperature stress of the components. To ensure the current sharing, usually a Current Mode Control (CMC) is employed. The SoA solutions that are implemented with VMC are limited to a single stage implementation. This thesis proposes a novel control method of the energy flow through the AEP and the main converter system. The proposed concept relays on a controlled injection of the auxiliary current at the output node where the instantaneous current value is n-1 times bigger than the output capacitor current with appropriate directions. Doing so, the AEP creates an equivalent n times bigger virtual capacitor at the output, thus reducing the output impedance. Due to the fact that the proposed concept reduces the output impedance using the AEP, it has been named the Output Impedance Correction Circuit (OICC) concept. The concept is developed for a multiphase CMC synchronous buck converter (including a single phase implementation), operating with a constant output voltage and with AVP feature. Further, it is extended to a single phase VMC synchronous buck converter. During the operation, the main converter voltage loop and the OICC subsystem capacitor current loop is constantly closed, increasing the robustness under system tolerances and circuit parasitic and allowing the system to operate with any load-current shape or pattern. According to the proposed control method, the system operates in two states: during the steady-state the system is in the Idle state and the OICC subsystem is deactivated, while during the load-step transient the system is in the Active state and the OICC subsystem is activated in order to reduce the output impedance. The state changes are performed autonomously: the system enters in the Active state by observing the output capacitor current and it returns back to the Idle state when the steady-state operation is detected by observing the state variables. The validation of the OICC concept has been done by applying it to a 30W two phase synchronous buck converter with 140F output capacitor and with the multiplication factor n equal to 15, generating during the Active state equivalent output capacitor of 2.1mF. The OICC subsystem is implemented as single phase PCMC synchronous buck converter. Comparing the converter operation with and without the OICC the results demonstrate that the 12 times reduction of the output voltage deviation is achieved, for both basic operation and for the AVP operation. Furthermore, the results have been compared to a reference prototype which has the same power stage and a fiscal output capacitor of 2.1mF. The results show that the two systems have the same dynamic behavior. Moreover, an impact on the system losses under the pulsating load and DVS operation has been quantified and it has been demonstrated that the OICC system has improved the system efficiency, considering the losses when the system operates with the pulsating load and the DVS operation. Lastly, the output capacitor of the OICC system is much smaller than the reference design output capacitor, therefore, by applying the OICC concept the power density can be increased. In summary, the main contributions of the thesis are: The proposed Output Impedance Correction Circuit (OICC) concept, The system level control based on the used approach to change the states of operation, The OICC subsystem closed-loop implementation, together with the main converter implementation, The dynamic losses under the pulsating load and the DVS operation quantification, and The system robustness on the capacitor impedance variation and consecutive load-steps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En la ltima dcada la potencia instalada de energa solar fotovoltaica ha crecido una media de un 49% anual y se espera que alcance el 16%del consumo energtico mundial en el ao 2050. La mayor parte de estas instalaciones se corresponden con sistemas conectados a la red elctrica y un amplio porcentaje de ellas son instalaciones domsticas o en edificios. En el mercado ya existen diferentes arquitecturas para este tipo de instalaciones, entre las que se encuentras los mdulos AC. Un mdulo AC consiste en un inversor, tambin conocido como micro-inversor, que se monta en la parte trasera de un panel o mdulo fotovoltaico. Esta tecnologa ofrece modularidad, redundancia y la extraccin de la mxima potencia de cada panel solar de la instalacin. Adems, la expansin de esta tecnologa posibilitar una reduccin de costes asociados a las economas de escala y a la posibilidad de que el propio usuario pueda componer su propio sistema. Sin embargo, el micro-inversor debe ser capaz de proporcionar una ganancia de tensin adecuada para conectar el panel solar directamente a la red, mientras mantiene un rendimiento aceptable en un amplio rango de potencias. Asimismo, los estndares de conexin a red deber ser satisfechos y el tamao y el tiempo de vida del micro-inversor son factores que han de tenerse siempre en cuenta. En esta tesis se propone un micro-inversor derivado de la topologa forward controlado en el lmite entre los modos de conduccin continuo y discontinuo (BCM por sus siglas en ingls). El transformador de la topologa propuesta mantiene la misma estructura que en el convertidor forward clsico y la utilizacin de interruptores bidireccionales en el secundario permite la conexin directa del inversor a la red. Asimismo el mtodo de control elegido permite obtener factor de potencia cercano a la unidad con una implementacin sencilla. En la tesis se presenta el principio de funcionamiento y los principales aspectos del diseo del micro-inversor propuesto. Con la idea de mantener una solucin sencilla y de bajo coste, se ha seleccionado un controlador analgico que est originalmente pensado para controlar un corrector del factor de potencia en el mismo modo de conduccin que el micro-inversor forward. La tesis presenta las principales modificaciones necesarias, con especial atencin a la deteccin del cruce por cero de la corriente (ZCD por sus siglas en ingls) y la compatibilidad del controlador con la inclusin de un algoritmo de bsqueda del punto de mxima potencia (MPPT por sus siglas en ingls). Los resultados experimentales muestran las limitaciones de la implementacin elegida e identifican al transformador como el principal contribuyente a las prdidas del micro-inversor. El principal objetivo de esta tesis es contribuir a la aplicacin de tcnicas de control y diseo de sistemas multifase en micro-inversores fotovoltaicos. En esta tesis se van a considerar dos configuraciones multifase diferentes aplicadas al micro-inversor forward propuesto. La primera consiste en una variacin con conexin paralelo-serie que permite la utilizacin de transformadores con una relacin de vueltas baja, y por tanto bien acoplados, para conseguir una ganancia de tensin adecuada con un mejor rendimiento. Esta configuracin emplea el mismo control BCM cuando la potencia extrada del panel solar es mxima. Este mtodo de control implica que la frecuencia de conmutacin se incrementa considerablemente cuando la potencia decrece, lo que compromete el rendimiento. Por lo tanto y con la intencin de mantener unos bueno niveles de rendimiento ponderado, el micro-inversor funciona en modo de conduccin discontinuo (DCM, por sus siglas en ingls) cuando la potencia extraa del panel solar es menor que la mxima. La segunda configuracin multifase considerada en esta tesis es la aplicacin de la tcnica de paralelo con entrelazado. Adems se han considerado dos tcnicas diferentes para decidir el nmero de fases activas: dependiendo de la potencia continua extrada del panel solar y dependiendo de la potencia instantnea demandada por el micro-inversor. La aplicacin de estas tcnicas es interesante en los sistemas fotovoltaicos conectados a la red elctrica por la posibilidad que brindan de obtener un rendimiento prcticamente plano en un amplio rango de potencia. Las configuraciones con entrelazado se controlan en DCM para evitar la necesidad de un control de corriente, lo que es importante cuando el nmero de fases es alto. Los ncleos adecuados para todas las configuraciones multifase consideradas se seleccionan usando el producto de reas. Una vez seleccionados los ncleos se ha realizado un diseo detallado de cada uno de los transformadores. Con la informacin obtenida de los diseos y los resultados de simulacin, se puede analizar el impacto que el nmero de transformadores utilizados tiene en el tamao y el rendimiento de las distintas configuraciones. Los resultados de este anlisis, presentado en esta tesis, se utilizan posteriormente para comparar las distintas configuraciones. Muchas otras topologas se han presentado en la literatura para abordar los diferentes aspectos a considerar en los micro-inversores, que han sido presentados anteriormente. La mayora de estas topologas utilizan un transformador de alta frecuencia para solventar el salto de tensin y evitar problemas de seguridad y de puesta a tierra. En cualquier caso, es interesante evaluar si topologas sin aislamiento galvnico son aptas para su utilizacin como micro-inversores. En esta tesis se presenta una revisin de inversores con capacidad de elevar tensin, que se comparan bajo las mismas especificaciones. El objetivo es proporcionar la informacin necesaria para valorar si estas topologas son aplicables en los mdulos AC. Las principales contribuciones de esta tesis son: La aplicacin del control BCM a un convertidor forward para obtener un micro-inversor de una etapa sencillo y de bajo coste. La modificacin de dicho micro-inversor con conexin paralelo-series de transformadores que permite reducir la corriente de los semiconductores y una ganancia de tensin adecuada con transformadores altamente acoplados. La aplicacin de tcnicas de entrelazado y decisin de apagado de fases en la puesta en paralelo del micro-inversor forward. El anlisis y la comparacin del efecto en el tamao y el rendimiento del incremento del nmero de transformadores en las diferentes configuraciones multifase. La eliminacin de las medidas y los lazos de control de corriente en las topologas multifase con la utilizacin del modo de conduccin discontinuo y un algoritmo MPPT sin necesidad de medida de corriente. La recopilacin y comparacin bajo las mismas especificaciones de topologas inversoras con capacidad de elevar tensin, que pueden ser adecuadas para la utilizacin como micro-inversores. Esta tesis est estructurada en seis captulos. El captulo 1 presenta el marco en que se desarrolla la tesis as como el alcance de la misma. En el captulo 2 se recopilan las topologas existentes de micro-invesores con aislamiento y aquellas sin aislamiento cuya implementacin en un mdulo AC es factible. Asimismo se presenta la comparacin entre estas topologas bajo las mismas especificaciones. El captulo 3 se centra en el micro-inversor forward que se propone originalmente en esta tesis. La aplicacin de las tcnicas multifase se aborda en los captulos 4 y 5, en los que se presentan los anlisis en funcin del nmero de transformadores. El captulo est orientado a la propuesta paralelo-serie mientras que la configuracin con entrelazado se analiza en el captulo 5. Por ltimo, en el captulo 6 se presentan las contribuciones de esta tesis y los trabajos futuros. ABSTRACT In the last decade the photovoltaic (PV) installed power increased with an average growth of 49% per year and it is expected to cover the 16% of the global electricity consumption by 2050. Most of the installed PV power corresponds to grid-connected systems, with a significant percentage of residential installations. In these PV systems, the inverter is essential since it is the responsible of transferring into the grid the extracted power from the PV modules. Several architectures have been proposed for grid-connected residential PV systems, including the AC-module technology. An AC-module consists of an inverter, also known as micro-inverter, which is attached to a PV module. The AC-module technology offers modularity, redundancy and individual MPPT of each module. In addition, the expansion of this technology will enable the possibility of economies of scale of mass market and plug and play for the user, thus reducing the overall cost of the installation. However, the micro-inverter must be able to provide the required voltage boost to interface a low voltage PV module to the grid while keeping an acceptable efficiency in a wide power range. Furthermore, the quality standards must be satisfied and size and lifetime of the solutions must be always considered. In this thesis a single-stage forward micro-inverter with boundary mode operation is proposed to address the micro-inverter requirements. The transformer in the proposed topology remains as in the classic forward converter and bidirectional switches in the secondary side allows direct connection to the grid. In addition the selected control strategy allows high power factor current with a simple implementation. The operation of the topology is presented and the main design issues are introduced. With the intention to propose a simple and low-cost solution, an analog controller for a PFC operated in boundary mode is utilized. The main necessary modifications are discussed, with the focus on the zero current detection (ZCD) and the compatibility of the controller with a MPPT algorithm. The experimental results show the limitations of the selected analog controller implementation and the transformer is identified as a main losses contributor. The main objective of this thesis is to contribute in the application of control and design multiphase techniques to the PV micro-inverters. Two different multiphase configurations have been applied to the forward micro-inverter proposed in this thesis. The first one consists of a parallel-series connected variation which enables the use of low turns ratio, i.e. well coupled, transformers to achieve a proper voltage boost with an improved performance. This multiphase configuration implements BCM control at maximum load however. With this control method the switching frequency increases significantly for light load operation, thus jeopardizing the efficiency. Therefore, in order to keep acceptable weighted efficiency levels, DCM operation is selected for low power conditions. The second multiphase variation considered in this thesis is the interleaved configuration with two different phase shedding techniques: depending on the DC power extracted from the PV panel, and depending on the demanded instantaneous power. The application of interleaving techniques is interesting in PV grid-connected inverters for the possibility of flat efficiency behavior in a wide power range. The interleaved variations of the proposed forward micro-inverter are operated in DCM to avoid the current loop, which is important when the number of phases is large. The adequate transformer cores for all the multiphase configurations are selected according to the area product parameter and a detailed design of each required transformer is developed. With this information and simulation results, the impact in size and efficiency of the number of transformer used can be assessed. The considered multiphase topologies are compared in this thesis according to the results of the introduced analysis. Several other topological solutions have been proposed to solve the mentioned concerns in AC-module application. The most of these solutions use a high frequency transformer to boost the voltage and avoid grounding and safety issues. However, it is of interest to assess if the non-isolated topologies are suitable for AC-module application. In this thesis a review of transformerless step-up inverters is presented. The compiled topologies are compared using a set benchmark to provide the necessary information to assess whether non-isolated topologies are suitable for AC-module application. The main contributions of this thesis are: The application of the boundary mode control with constant off-time to a forward converter, to obtain a simple and low-cost single-stage forward micro-inverter. A modification of the forward micro-inverter with primary-parallel secondary-series connected transformers to reduce the current stress and improve the voltage gain with highly coupled transformers. The application of the interleaved configuration with different phase shedding strategies to the proposed forward micro-inverter. An analysis and comparison of the influence in size and efficiency of increasing the number of transformers in the parallel-series and interleaved multiphase configurations. Elimination of the current loop and current measurements in the multiphase topologies by adopting DCM operation and a current sensorless MPPT. A compilation and comparison with the same specifications of suitable non-isolated step-up inverters. This thesis is organized in six chapters. In Chapter 1 the background of single-phase PV-connected systems is discussed and the scope of the thesis is defined. Chapter 2 compiles the existing solutions for isolated micro-inverters and transformerless step-up inverters suitable for AC-module application. In addition, the most convenient non-isolated inverters are compared using a defined benchmark. Chapter 3 focuses on the originally proposed single-stage forward micro-inverter. The application of multiphase techniques is addressed in Chapter 4 and Chapter 5, and the impact in different parameters of increasing the number of phases is analyzed. In Chapter 4 an original primary-parallel secondary-series variation of the forward micro-inverter is presented, while Chapter 5 focuses on the application of the interleaved configuration. Finally, Chapter 6 discusses the contributions of the thesis and the future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contiene con port. propia: D. Joan. Baptistae Orivai, sive Orivarri et de Monreal ... Commentarium II in sent. XXIX Lib. II Aphor. Hippocratis de Sanguinis-missione ... ; D. Joan. Baptistae Orivai, sive Orivarri et de Monreal ... Antipodophlebotomia ...