953 resultados para Conus Venom Peptides
Resumo:
The primary sequence and three-dimensional structure of a novel peptide toxin isolated from the Australian funnel-web spider Hadronyche infensa sp. is reported. ACTX-HI:OB4219 contains 38 amino acids, including eight-cysteine residues that form four disulfide bonds. The connectivities of these disulfide bonds were previously unknown but have been unambiguously determined in this study. Three of these disulfide bonds are arranged in an inhibitor cystine-knot (ICK) motif, which is observed in a range of other disulfide-rich peptide toxins. The motif incorporates an embedded ring in the structure formed by two of the disulfides and their connecting backbone segments penetrated by a third disulfide bond. Using NMR spectroscopy, we determined that despite the isolation of a single native homologous product by RP-HPLC, ACTX-HI:OB4219 possesses two equally populated conformers in solution. These two conformers were determined to arise from cis/trans isomerization of the bond preceding Pro30. Full assignment of the NMR spectra for both conformers allowed for the calculation of their structures, revealing, the presence of a triple-stranded antiparallel sheet consistent with the inhibitor cystine-knot (ICK) motif.
Resumo:
Signal peptides and transmembrane helices both contain a stretch of hydrophobic amino acids. This common feature makes it difficult for signal peptide and transmembrane helix predictors to correctly assign identity to stretches of hydrophobic residues near the N-terminal methionine of a protein sequence. The inability to reliably distinguish between N-terminal transmembrane helix and signal peptide is an error with serious consequences for the prediction of protein secretory status or transmembrane topology. In this study, we report a new method for differentiating protein N-terminal signal peptides and transmembrane helices. Based on the sequence features extracted from hydrophobic regions (amino acid frequency, hydrophobicity, and the start position), we set up discriminant functions and examined them on non-redundant datasets with jackknife tests. This method can incorporate other signal peptide prediction methods and achieve higher prediction accuracy. For Gram-negative bacterial proteins, 95.7% of N-terminal signal peptides and transmembrane helices can be correctly predicted (coefficient 0.90). Given a sensitivity of 90%, transmembrane helices can be identified from signal peptides with a precision of 99% (coefficient 0.92). For eukaryotic proteins, 94.2% of N-terminal signal peptides and transmembrane helices can be correctly predicted with coefficient 0.83. Given a sensitivity of 90%, transmembrane helices can be identified from signal peptides with a precision of 87% (coefficient 0.85). The method can be used to complement current transmembrane protein prediction and signal peptide prediction methods to improve their prediction accuracies. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
delta-Atracotoxin-Ar1a (delta-ACTX-Ar1a) is the major polypeptide neurotoxin isolated from the venom of the male Sydney funnel-web spider, Atrax robustus. This neurotoxin targets both insect and mammalian voltage-gated sodium channels, where it competes with scorpion alpha-toxins for neurotoxin receptor site-3 to slow sodium-channel inactivation. Progress in characterizing the structure and mechanism of action of this toxin has been hampered by the limited supply of pure toxin from natural sources. In this paper, we describe the first successful chemical synthesis and oxidative refolding of the four-disulfide bond containing delta-ACTX-Ar1a. This synthesis involved solid-phase Boc chemistry using double coupling, followed by oxidative folding of purified peptide using a buffer of 2 M GdnHCl and glutathione/glutathiol in a 1:1 mixture of 2-propanol (pH 8.5). Successful oxidation and refolding was confirmed using both chemical and pharmacological characterization. Ion spray mass spectrometry was employed to confirm the molecular weight. H-1 NMR analysis showed identical chemical shifts for native and synthetic toxins, indicating that the synthetic toxin adopts the native fold. Pharmacological studies employing whole-cell patch clamp recordings from rat dorsal root ganglion neurons confirmed that synthetic delta-ACTX-Ar1a produced a slowing of the sodium current inactivation and hyperpolarizing shifts in the voltage-dependence of activation and inactivation similar to native toxin. Under current clamp conditions, we show for the first time that delta-ACTX-Ar1a produces spontaneous repetitive plateau potentials underlying the clinical symptoms seen during envenomation. This successful oxidative refolding of synthetic delta-ACTX-Ar1a paves the way for future structure-activity studies to determine the toxin pharmacophore.
Resumo:
1. Tiger snake antivenom, raised against Notechis scutatus venom, is indicated not only for the treatment of envenomation by this snake, but also that of the copperhead (Austrelaps superbus ) and Stephen's banded snake (Hoplocephalus stephensi ). The present study compared the neuromuscular pharmacology of venom from these snakes and the in vitro efficacy of tiger snake antivenom. 2. In chick biventer cervicis muscle and mouse phrenic nerve diaphragm preparations, all venoms (3-10 mug/mL) produced inhibition of indirect twitches. In the biventer muscle, venoms (10 mug/mL) inhibited responses to acetylcholine (1 mmol/L) and carbachol (20 mumol/L), but not KCl (40 mmol/L). The prior (10 min) administration of 1 unit/mL antivenom markedly attenuated the neurotoxic effects of A. superbus and N. scutatus venoms (10 mug/mL), but was less effective against H. stephensi venom (10 mug/mL); 5 units/mL antivenom attenuated the neurotoxic activity of all venoms. 3. Administration of 5 units/mL antivenom at t(90) partially reversed, over a period of 3 h, the inhibition of twitches produced by N. scutatus (10 mug/mL; 41% recovery), A. superbus (10 mug/mL; 25% recovery) and H. stephensi (10 mug/mL; 50% recovery) venoms. All venoms (10-100 mug/mL) also displayed signs of in vitro myotoxicity. 4. The results of the present study indicate that all three venoms contain neurotoxic activity that is effectively attenuated by tiger snake antivenom.
Resumo:
Os doentes com diabetes mellitus tipo 2 apresentam predisposição para a retenção de sódio e são frequentemente hipertensos. No entanto, os mecanismos implicados na dificuldade do rim diabético em mobilizar o sódio são, ainda, pouco compreendidos. Os peptídeos da família das guanilinas estão envolvidos na regulação do transporte de electrólitos e água nos epitélios intestinal e renal, através da activação do receptor guanilato ciclase-C (GC-C) e subsequente libertação intracelular de GMPc. O objectivo do presente estudo foi a avaliação da actividade do sistema dos peptídeos das guanilinas (SPG) e do seu papel na regulação do balanço de sódio num modelo animal de diabetes tipo 2. Ratinhos machos C57BL/6 foram submetidos a uma dieta com alto teor de gordura e rica em hidratos de carbono simples (ratinhos diabéticos) ou a uma dieta normal (ratinhos controlo). A expressão renal e intestinal da guanilina (GN), uroguanilina (UGN) e do receptor GC-C assim como os níveis de GMPc na urina e plasma foram avaliados nos ratinhos controlo e diabéticos, durante a ingestão de dietas normo (NS) e hiper-salina (HS). Nos ratinhos diabéticos, durante a dieta NS verificou-se um aumento significativo da pressão arterial que foi acompanhado de redução da expressão do ARNm da GN, UGN e do GC-C no intestino e de aumento da expressão de ARNm da UGN no rim. A dieta HS induziu um aumento da expressão do ARNm da UGN no jejuno dos ratinhos controlo mas não nos diabéticos. Os ratinhos diabéticos apresentaram níveis urinários de GMPc inferiores aos controlos, em condições de dieta NS. Em conclusão, os nossos resultados sugerem que na diabetes tipo 2 ocorre uma redução da actividade intestinal do SPG que é acompanhada por um aumento compensatório da actividade renal do SPG. A diminuição da actividade do SPG intestinal na diabetes tipo 2 deve-se não só a uma redução da expressão dos peptídeos GN e UGN, mas também a uma redução da expressão do seu receptor, GC-C. Estes resultados sugerem que o SPG pode contribuir para a sensibilidade ao sódio na diabetes.
Resumo:
The sensitivity and specificity of an enzyme-linked immunosorbent assay (ELISA) for the detection of circulating antigens from toxic components of Tityus serrulatus scorpion venom was determined in patients stung by T. serrulatus before antivenom administration. Thirty-seven patients were classified as mild cases and 19 as moderate or severe cases. The control absorbance in the venom assay was provided by serum samples from 100 individuals of same socioeconomic group and geographical area who had never been stung by scorpions or treated with horse antisera. The negative cutoff value (mean + 2 SD) corresponded to a venom concentration of 4.8 ng/ml. Three out of the 100 normal sera were positive, resulting in a specificity of 97%. The sensitivity of the ELISA when all cases of scorpion sting were included was 39.3%. When mild cases were excluded, the sensitivity increased to 94.7%. This study showed that this ELISA can be used for the detection of circulating venom toxic antigens in patients with systemic manifestations following. T. serrulatus sting but cannot be used for clinical studies in mild cases of envenoming since the test does not discriminate mild cases from control patients.
Resumo:
Primary cultures of human keratinocytes were challenged with increasing doses from 10 ng/mL to 2 mg/mL of Loxosceles gaucho venom, responsible for dermonecrotic lesion in humans. TNF-a was investigated by bioassay and ELISA in the supernatant of the cultures challenged with 100 ng/mL, 500 ng/mL, 1 and 2 mg/mL of venom. TNF-a was detected by bioassay in the supernatant of cultures challenged with 100 ng/mL, after 6 h. The cytokine was detected by ELISA in the supernatant of the cells challenged with doses of l mg/mL, after 6 and 12 h. The results point out the capacity of this venom to activate the keratinocytes in primary cultures to produce TNF-a. The production of cytokines could contribute to the local inflammatory process in patients bitten by Loxosceles sp.
Resumo:
Renal damage is an important cause of death in patients who have survived the early effects of severe crotalid envenomation. Extracellular matrix of renal tissue is altered by Crotalus toxin activities. The aim of this study was to describe how cytoskeletal proteins and basal membrane components undergo substantial alterations under the action of Crotalus vegrandis crude venom and its hemorrhagic fraction (Uracoina-1) in mice. To detect the proteins in question, the immunoperoxidase method with monoclonal and polyclonal antibodies was used. Cell types within renal lesions were characterized by phenotypic identification, by means of immunohistologic analysis of marker proteins using different primary antibodies against mesangial cells, endothelial cells, cytoskeletal proteins (intermediate filament), extracellular matrix and basal membranes. Samples for morphological study by standard procedures (biotin-streptavidin-peroxidase technique) using light microscopy were processed. Positive and negative controls for each antigen tested in the staining assay were included. After crude venom and hemorrhagic fraction inoculation of mice, the disappearance of cytoskeletal vimentin and desmin and collagen proteins in the kidney was observed. In extracellular matrix and basal membranes, collagen type IV from envenomed animals tends to disappear from 24 h to 120 h after venom injection.
Resumo:
The manifestations caused by Africanized bee stings depend on the sensitivity of the victim and the toxicity of the venom. Previous studies in our laboratory have demonstrated cardiac changes and acute tubular necrosis (ATN) in the kidney of rats inoculated with Africanized bee venom (ABV). The aim of the present study was to evaluate the changes in mean arterial pressure (MAP) and heart rate (HR) over a period of 24 h after intravenous injection of ABV in awake rats. A significant reduction in basal HR as well as in basal MAP occurred immediately after ABV injection in the experimental animals. HR was back to basal level 2 min after ABV injection and remained normal during the time course of the experiment, while MAP returned to basal level 10 min later and remained at this level for the next 5 h. However, MAP presented again a significant reduction by the 7th and 8th h and returned to the basal level by the 24th h. The fall in MAP may contribute to the pathogenesis of ATN observed. The fall in MAP probably is due to several factors, in addition to the cardiac changes already demonstrated, it is possible that the components of the venom themselves or even substances released in the organism play some role in vascular beds.
Resumo:
The pathogenesis of the renal lesion upon envenomation by snakebite has been related to myolysis, hemolysis, hypotension and/or direct venom nephrotoxicity caused by the venom. Both primary and continuous cell culture systems provide an in vitro alternative for quantitative evaluation of the toxicity of snake venoms. Crude Crotalus vegrandis venom was fractionated by molecular exclusion chromatography. The toxicity of C. vegrandis crude venom, hemorrhagic, and neurotoxic fractions were evaluated on mouse primary renal cells and a continuous cell line of Vero cells maintained in vitro. Cells were isolated from murine renal cortex and were grown in 96 well plates with Dulbecco's Modified Essential Medium (DMEM) and challenged with crude and venom fractions. The murine renal cortex cells exhibited epithelial morphology and the majority showed smooth muscle actin determined by immune-staining. The cytotoxicity was evaluated by the tetrazolium colorimetric method. Cell viability was less for crude venom, followed by the hemorrhagic and neurotoxic fractions with a CT50 of 4.93, 18.41 and 50.22 µg/mL, respectively. The Vero cell cultures seemed to be more sensitive with a CT50 of 2.9 and 1.4 µg/mL for crude venom and the hemorrhagic peak, respectively. The results of this study show the potential of using cell culture system to evaluate venom toxicity.
Resumo:
Eight new peptides were isolated from the skin secretion of the frog Leptodactylus pustulatus and their amino acid sequences determined by de novo sequencing and by cDNA cloning. Structural similarities between them and other antimicrobial peptides from the skin secretion of Leptodactylus genus frogs were found. Ocellatins-PT1 to -PT5 (25 amino acid residues) are amidated at the C-terminus, while ocellatins-PT6 to -PT8 (32 amino acid residues) have free carboxylates. Antimicrobial activity, hemolytic tests, and cytotoxicity against a murine fibroblast cell line were investigated. All peptides, except for ocellatin-PT2, have antimicrobial activity against at least one Gram negative strain. Ocellatin-PT8 inhibited the growth of Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Salmonella choleraesuis strains with MICs in the 60−240 μM range. No significant effect was observed in human erythrocytes and in a murine fibroblast cell line after exposure to the peptides at MICs. A comparison between sequences obtained by both direct HPLC-MS de novo sequencing and cDNA cloning demonstrates the secretion of mature peptides derived from a pre-pro-peptide structure.
Resumo:
Brown widow spider (Latrodectus geometricus) venom (BrWSV) produces few local lesions and intense systemic reactions such as cramps, harsh muscle pains, nausea, vomiting and hypertension. Approximately 16 protein bands under reducing conditions and ~ 14 bands under non-reducing conditions on a 12.5% sodium dodecyl sulfate-polyacrylamide gel electrophoresis were observed. Neurotoxic clinical manifestations were confirmed in vivo, while proteolytic activity was demonstrated on gelatine film. Severe ultrastructural damages in mice skeletal muscles were observed at 3, 6, 12 and 24 h postinjection with at total of 45 µg of venom protein. Infiltration of eosinophils and ruptures of the cellular membranes were observed in the muscles along with swelling of the nuclear cover and interruption of the collagen periodicity. Altered mitochondrias and autophage vacuoles, nuclear indentation and mitochondria without cristae, slight increment of intermyofibrillar and subsarcolemic spaces and myelinic figures formation were also observed. In the capillary, endothelial membrane unfolding into the lumen was noticed; along with myelinic figures compatible with a toxic myopathy. Swollen sarcotubular systems with lysis of membrane, intense mitochondria autophagia and areas without pinocytic vesicles were observed. Swollen mitochondria surrounded by necrotic areas, myofibrillar disorganization and big vacuolas of the sarcotubular system, degenerated mitochondrium with formation of myelinic figure was seen. Glycogenosomes with small particulate, muscle type glycogen was noticed. Autophagic vacuole (autophagolysosomes) and necrotic areas were also noticed. These damages may be due to interactive effects of the multifactorial action of venom components. However, Latrodectus geometricus venom molecules may also be utilized as neuro therapeutic tools, as they affect neuronal activities with high affinity and selectivity. To our knowledge, the present study is the first ultrastructural report in the literature of muscle injuries and neurological and proteolytic activities caused by BrWSV.
Resumo:
The main serological marker for the diagnosis of recent toxoplasmosis is the specific IgM antibody, along with IgG antibodies of low avidity. However, in some patients these antibodies may persist long after the acute/recent phase, contributing to misdiagnosis in suspected cases of toxoplasmosis. In the present study, the diagnostic efficiency of ELISA was evaluated, with the use of peptides derived from T. gondii ESA antigens, named SAG-1, GRA-1 and GRA-7. In the assay referred to, we studied each of these peptides individually, as well as in four different combinations, as Multiple Antigen Peptides (MAP), aiming to establish a reliable profile for the acute/recent toxoplasmosis with only one patient serum sample. The diagnostic performance of the assay using MAP1, with the combination of SAG-1, GRA-1 and GRA-7 peptides, demonstrated better discrimination of the acute/recent phase from non acute/recent phase of toxoplasmosis. Our results show that IgM antibodies to MAP1 may be useful as a serological marker, enhancing the diagnostic efficiency of the assay for acute/recent phase of toxoplasmosis.