986 resultados para Continuous Monitoring


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: In vitro studies in porcine eyes have demonstrated a good correlation between induced intraocular pressure variations and corneal curvature changes, using a contact lens with an embedded microfabricated strain gauge. Continuous 24 hour-intraocular pressure (IOP) monitoring to detect large diurnal fluctuation is currently an unmet clinical need. The aims of this study is to evaluate precision of signal transmission and biocompatibility of 24 hour contact lens sensor wear (SENSIMED Triggerfish®) in humans. Methods: After full eye examination in 10 healthy volunteers, a 8.7 mm radius contact lens sensor and an orbital bandage containing a loop antenna were applied and connected to a portable recorder. Best corrected visual acuity and position, lubrication status and mobility of the sensor were assessed after 5 and 30 minutes, 4, 7 and 24 hours. Subjective comfort was scored and activities documented in a logbook. After sensor removal full eye examination was repeated, and the registration signal studied. Results: The comfort score was high and did not fluctuate significantly, except at the 7 hour-visit. The mobility of the contact lens was minimal but its lubrication remained good. Best corrected visual acuity was significantly reduced during the sensor wear and immediately after its removal. Three patients developed mild corneal staining. In all but one participant we obtained a registration IOP curve with visible ocular pulse amplitude. Conclusions: This 24 hour-trial confirmed the functionality and biocompatibility of SENSIMED Triggerfish® wireless contact lens sensor for IOP-fluctuation monitoring in volunteers. Further studies with a range of different contact lens sensor radii are indicated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and objective: Oral anti-cancer treatments have expanded rapidly over the last years. While taking oral tablets at home ensures a better quality of life, it also exposes patients to the risk of sub-optimal adherence. The objective of this study is to assess how well ambulatory cancer patients execute their prescribed dosing regimen while they are engaged with continuous anti-cancer treatments. Design: This is an on-going longitudinal study. Consecutive patients starting an oral treatment are proposed to enter the study by the oncologist. Then they are referred to the pharmacy, where their oral anticancer treatment is dispensed in a Medication Event Monitoring System (MEMSTM), which records date and time of each opening of the drug container. Electronically compiled dosing history data from the MEMS are summarized and used as feedback during semistructured interviews with the pharmacist, which are dedicated to prevention and management of side effects. Interviews are scheduled before each medical visit. Report of the interview is available to the oncologist via an on-line secured portal. Setting: Seamless care approach between a Multidisciplinary Oncology Center and the Pharmacy of an Ambulatory Care and Community Medicine Department. Main outcome measures: For each patient, the comparison between the electronically compiled dosing history and the prescribed regimen was summarized using a daily binary indicator indicating whether yes or no the patient has taken the medication as prescribed. Results: Study started in March 2008. Among 22 eligible patients, 19 were included (11 men, median age 63 years old) and 3 (14%) refused to participate. 15 patients were prescribed a QD regimen, 3 patients a BID and 1 patient switched from QD to BID during follow-up. Median follow up was 182 days (IQR 72-252). Early discontinuation happened in four patients: side effects (n = 1), psychiatric reasons (n = 1), cancer progression (n = 1) and death (n = 1). On average, the daily number of medications was taken as prescribed in 99% of the follow-up days. Conclusions: Execution of the prescribed dosing regimens was almost perfect during the first 6 months. Maintaining this high degree of regimen execution and persistence over time might however be challenging in this population and need therefore to be confirmed in larger and longer follow-up cohort studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micro-electromechanical systems (MEMS) provide vast improvements over existing sensing methods in the context of structural health monitoring (SHM) of highway infrastructure systems, including improved system reliability, improved longevity and enhanced system performance, improved safety against natural hazards and vibrations, and a reduction in life cycle cost in both operating and maintaining the infrastructure. Advancements in MEMS technology and wireless sensor networks provide opportunities for long-term continuous, real-time structural health monitoring of pavements and bridges at low cost within the context of sustainable infrastructure systems. The primary objective of this research was to investigate the use of MEMS in highway structures for health monitoring purposes. This study focused on investigating the use of MEMS and their potential applications in concrete through a comprehensive literature review, a vendor survey, and a laboratory study, as well as a small-scale field study. Based on the comprehensive literature review and vendor survey, the latest information available on off-the-shelf MEMS devices, as well as research prototypes, for bridge, pavement, and traffic applications were synthesized. A commercially-available wireless concrete monitoring system based on radio-frequency identification (RFID) technology and off-the-shelf temperature and humidity sensors were tested under controlled laboratory and field conditions. The test results validated the ability of the RFID wireless concrete monitoring system in accurately measuring the temperature both inside the laboratory and in the field under severe weather conditions. In consultation with the project technical advisory committee (TAC), the most relevant MEMS-based transportation infrastructure research applications to explore in the future were also highlighted and summarized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: A central question for ecologists is the extent to which anthropogenic disturbances (e.g. tourism) might impact wildlife and affect the systems under study. From a research perspective, identifying the effects of human disturbance caused by research-related activities is crucial in order to understand and account for potential biases and derive appropriate conclusions from the data. RESULTS: Here, we document a case of biological adjustment to chronic human disturbance in a colonial seabird, the king penguin (Aptenodytes patagonicus), breeding on remote and protected islands of the Southern ocean. Using heart rate (HR) as a measure of the stress response, we show that, in a colony with areas exposed to the continuous presence of humans (including scientists) for over 50 years, penguins have adjusted to human disturbance and habituated to certain, but not all, types of stressors. When compared to birds breeding in relatively undisturbed areas, birds in areas of high chronic human disturbance were found to exhibit attenuated HR responses to acute anthropogenic stressors of low-intensity (i.e. sounds or human approaches) to which they had been subjected intensely over the years. However, such attenuation was not apparent for high-intensity stressors (i.e. captures for scientific research) which only a few individuals experience each year. CONCLUSIONS: Habituation to anthropogenic sounds/approaches could be an adaptation to deal with chronic innocuous stressors, and beneficial from a research perspective. Alternately, whether penguins have actually habituated to anthropogenic disturbances over time or whether human presence has driven the directional selection of human-tolerant phenotypes, remains an open question with profound ecological and conservation implications, and emphasizes the need for more knowledge on the effects of human disturbance on long-term studied populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Of the approximately 25,000 bridges in Iowa, 28% are classified as structurally deficient, functionally obsolete, or both. The state of Iowa thus follows the national trend of an aging infrastructure in dire need of repair or replacement with a relatively limited funding base. Therefore, there is a need to develop new materials with properties that may lead to longer life spans and reduced life-cycle costs. In addition, new methods for determining the condition of structures are needed to monitor the structures effectively and identify when the useful life of the structure has expired or other maintenance is needed. High-performance steel (HPS) has emerged as a material with enhanced weldability, weathering capabilities, and fracture toughness compared to conventional structural steels. In 2004, the Iowa Department of Transportation opened Iowa's first HPS girder bridge, the East 12th Street Bridge over I-235 in Des Moines, Iowa. The objective of this project was to evaluate HPS as a viable option for use in Iowa bridges with a continuous structural health monitoring (SHM) system. The scope of the project included documenting the construction of the East 12th Street Bridge and concurrently developing a remote, continuous SHM system using fiber-optic sensing technology to evaluate the structural performance of the bridge. The SHM system included bridge evaluation parameters, similar to design parameters used by bridge engineers, for evaluating the structure. Through the successful completion of this project, a baseline of bridge performance was established that can be used for continued long-term monitoring of the structure. In general, the structural performance of the HPS bridge exceeded the design parameters and is performing well. Although some problems were encountered with the SHM system, the system functions well and recommendations for improving the system have been made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydrogeological properties and responses of a productive aquifer in northeastern Switzerland are investigated. For this purpose, 3D crosshole electrical resistivity tomography (ERT) is used to define the main lithological structures within the aquifer (through static inversion) and to monitor the water infiltration from an adjacent river. During precipitation events and subsequent river flooding, the river water resistivity increases. As a consequence, the electrical characteristics of the infiltrating water can be used as a natural tracer to delineate preferential flow paths and flow velocities. The focus is primarily on the experiment installation, data collection strategy, and the structural characterization of the site and a brief overview of the ERT monitoring results. The monitoring system comprises 18 boreholes each equipped with 10 electrodes straddling the entire thickness of the gravel aquifer. A multi-channel resistivity system programmed to cycle through various four-point electrode configurations of the 180 electrodes in a rolling sequence allows for the measurement of approximately 15,500 apparent resistivity values every 7 h on a continuous basis. The 3D static ERT inversion of data acquired under stable hydrological conditions provides a base model for future time-lapse inversion studies and the means to investigate the resolving capability of our acquisition scheme. In particular, it enables definition of the main lithological structures within the aquifer. The final ERT static model delineates a relatively high-resistivity, low-porosity, intermediate-depth layer throughout the investigated aquifer volume that is consistent with results from well logging and seismic and radar tomography models. The next step will be to define and implement an appropriate time-lapse ERT inversion scheme using the river water as a natural tracer. The main challenge will be to separate the superposed time-varying effects of water table height, temperature, and salinity variations associated with the infiltrating water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Container Handling Equipment Monitoring System (CHEMS) is a system developed by Savcor One Oy. CHEMS measures important information for container ports performance and produces performance indicators. The aim of this thesis was to clarify performance measurement contents to Savcor and to develop, as an example, performance measures to Steveco Oy's container operations. The theoretical part of the thesis clarifies performance measurement and which of its components are important to container port. Performance measurement and measures are presented from the operational level's point of view, in which CHEMS is planned to aim. The theory of development process of performance measures is introduced at the end of the theoretical part. To make sure that performance measures are efficiently used, Steveco Oy's performance measures are developed in cooperation with the users. The measurement in operational level is continuous and the results must be reacted asquickly as possible. CHEMS is very suitable to continuous measurement and to produce real time-measures of container operations which are hard to get any otherway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Careful patient monitoring using a variety of techniques including clinical and laboratory evaluation, bedside physiological monitoring with continuous or non-continuous techniques and imaging is fundamental to the care of patients who require neurocritical care. How best to perform and use bedside monitoring is still being elucidated. To create a basic platform for care and a foundation for further research the Neurocritical Care Society in collaboration with the European Society of Intensive Care Medicine, the Society for Critical Care Medicine and the Latin America Brain Injury Consortium organized an international, multidisciplinary consensus conference to develop recommendations about physiologic bedside monitoring. This supplement contains a Consensus Summary Statement with recommendations and individual topic reviews as a background to the recommendations. In this article, we highlight the recommendations and provide additional conclusions as an aid to the reader and to facilitate bedside care.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Living bacteria or yeast cells are frequently used as bioreporters for the detection of specific chemical analytes or conditions of sample toxicity. In particular, bacteria or yeast equipped with synthetic gene circuitry that allows the production of a reliable non-cognate signal (e.g., fluorescent protein or bioluminescence) in response to a defined target make robust and flexible analytical platforms. We report here how bacterial cells expressing a fluorescence reporter ("bactosensors"), which are mostly used for batch sample analysis, can be deployed for automated semi-continuous target analysis in a single concise biochip. Escherichia coli-based bactosensor cells were continuously grown in a 13 or 50 nanoliter-volume reactor on a two-layered polydimethylsiloxane-on-glass microfluidic chip. Physiologically active cells were directed from the nl-reactor to a dedicated sample exposure area, where they were concentrated and reacted in 40 minutes with the target chemical by localized emission of the fluorescent reporter signal. We demonstrate the functioning of the bactosensor-chip by the automated detection of 50 μgarsenite-As l(-1) in water on consecutive days and after a one-week constant operation. Best induction of the bactosensors of 6-9-fold to 50 μg l(-1) was found at an apparent dilution rate of 0.12 h(-1) in the 50 nl microreactor. The bactosensor chip principle could be widely applicable to construct automated monitoring devices for a variety of targets in different environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims:This study was carried out to evaluate the feasibility of two different methods to determine free flap perfusion in cancer patients undergoing major reconstructive surgery. The hypotheses was that low perfusion in the flap is associated with flap complications. Patients and methods: Between August 2002 and June 2008 at the Department of Otorhinolaryngology – Head and Neck Surgery, Department of Surgery, and at the PET Centre, Turku, 30 consecutive patients with 32 free flaps were included in this study. The perfusion of the free microvascular flaps was assessed with positron emission tomography (PET) and radioactive water ([15O] H2O) in 40 radiowater injections in 33 PET studies. Furthermore, 24 free flaps were monitored with a continuous tissue oxygen measurement using flexible polarographic catheters for an average of three postoperative days. Results: Of the 17 patients operated on for head and neck (HN) cancer and reconstructed with 18 free flaps, three re-operations were carried out due to poor tissue oxygenation as indicated by ptiO2 monitoring results and three other patients were reoperated on for postoperative hematomas in the operated area. Blood perfusion assessed with PET (BFPET) was above 2.0 mL / min / 100 g in all flaps and a low flap-to-muscle BFPET ratio appeared to correlate with poor survival of the flap. Survival in this group of HN cancer patients was 9.0 months (median, range 2.4-34.2) after a median follow-up of 11.9 months (range 1.0-61.0 months). Seven HN patients of this group are alive without any sign of recurrence and one patient has died of other causes. All of the 13 breast reconstruction patients included in the study are alive and free of disease at a median follow-up time of 27.4 months (range 13.9-35.7 months). Re-explorations were carried out in three patients due data provided by ptiO2 monitoring and one re-exploration was avoided on the basis of adequate blood perfusion assessed with PET. Two patients had donorsite morbidity and 3 patients had partial flap necrosis or fat necrosis. There were no total flap losses. Conclusions: PtiO2 monitoring is a feasible method of free flap monitoring when flap temperature is monitored and maintained close to the core temperature. When other monitoring methods give controversial results or are unavailable, [15O] H2O PET technique is feasible in the evaluation of the perfusion of the newly reconstructed free flaps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to examine suitability of BimTwin cleaning concept in card board machine to control microbiological activity and describe microbiological balance of the machine. In a review of literature is examined microbe and spore caused problems in paper industry. Biggest problems are deposits, which decrease runnability and cause quality errors. In this chapter is also introduced most common oxidizing biocides used in paper industry and described ATP assay as a microbiological monitoring method. In an experimental part are included BimTwin mill trial results, chemical condition monitoring methods and microbiological balance in a card board machine. In a second part are examined possibilities to effect hygiene of card board by chemical treatment of the surface size and coating. Result showed that BimTwin concept is suitable for card board machine as a cleaning concept, when chemical dosing is fitted right. For proper dosing and secure tolerable hygiene level, chemical and microbiological monitoring is significant. Determining of the microbiological balance would have need more sampling. According to acquired results, broke turned out to be the biggest microbe source. Sizing and coating experiments showed that it is possible to improve hygiene of card board by chemically treated surface size and coating color.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystallization is a purification method used to obtain crystalline product of a certain crystal size. It is one of the oldest industrial unit processes and commonly used in modern industry due to its good purification capability from rather impure solutions with reasonably low energy consumption. However, the process is extremely challenging to model and control because it involves inhomogeneous mixing and many simultaneous phenomena such as nucleation, crystal growth and agglomeration. All these phenomena are dependent on supersaturation, i.e. the difference between actual liquid phase concentration and solubility. Homogeneous mass and heat transfer in the crystallizer would greatly simplify modelling and control of crystallization processes, such conditions are, however, not the reality, especially in industrial scale processes. Consequently, the hydrodynamics of crystallizers, i.e. the combination of mixing, feed and product removal flows, and recycling of the suspension, needs to be thoroughly investigated. Understanding of hydrodynamics is important in crystallization, especially inlargerscale equipment where uniform flow conditions are difficult to attain. It is also important to understand different size scales of mixing; micro-, meso- and macromixing. Fast processes, like nucleation and chemical reactions, are typically highly dependent on micro- and mesomixing but macromixing, which equalizes the concentrations of all the species within the entire crystallizer, cannot be disregarded. This study investigates the influence of hydrodynamics on crystallization processes. Modelling of crystallizers with the mixed suspension mixed product removal (MSMPR) theory (ideal mixing), computational fluid dynamics (CFD), and a compartmental multiblock model is compared. The importance of proper verification of CFD and multiblock models is demonstrated. In addition, the influence of different hydrodynamic conditions on reactive crystallization process control is studied. Finally, the effect of extreme local supersaturation is studied using power ultrasound to initiate nucleation. The present work shows that mixing and chemical feeding conditions clearly affect induction time and cluster formation, nucleation, growth kinetics, and agglomeration. Consequently, the properties of crystalline end products, e.g. crystal size and crystal habit, can be influenced by management of mixing and feeding conditions. Impurities may have varying impacts on crystallization processes. As an example, manganese ions were shown to replace magnesium ions in the crystal lattice of magnesium sulphate heptahydrate, increasing the crystal growth rate significantly, whereas sodium ions showed no interaction at all. Modelling of continuous crystallization based on MSMPR theory showed that the model is feasible in a small laboratoryscale crystallizer, whereas in larger pilot- and industrial-scale crystallizers hydrodynamic effects should be taken into account. For that reason, CFD and multiblock modelling are shown to be effective tools for modelling crystallization with inhomogeneous mixing. The present work shows also that selection of the measurement point, or points in the case of multiprobe systems, is crucial when process analytical technology (PAT) is used to control larger scale crystallization. The thesis concludes by describing how control of local supersaturation by highly localized ultrasound was successfully applied to induce nucleation and to control polymorphism in reactive crystallization of L-glutamic acid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physical and chemical alterations in palm oil during continuous industrial par frying of breaded chicken snacks were evaluated using a pseudo first-order kinetic model. The acidity index, refractive index, concentration of polar compounds, viscosity, color, and absorbance (232 and 268 nm) of 238 samples of the frying oil collected during 26 days of production were analyzed. For all of the analyses, the results of the oil were below the limits recommended for oil disposal, indicating that the processing conditions were safe and that under these experimental conditions the oil remained suitable for frying. The linear regressions were significant for refractive index, content of polar compounds, and lightness (L*). The content of polar compounds was determined using a cooking oil tester, and it had the best fit to the proposed model and can be used as an effective index for monitoring palm oil during the continuous par frying of breaded chicken snacks. The high turnover rate of the oil was important for maintaining the oil in good running conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to investigate a novel light backscatter sensor, with a large field of view relative to curd size, for continuous on-line monitoring of coagulation and syneresis to improve curd moisture content control. A three-level, central composite design was employed to study the effects of temperature, cutting time, and CaCl2 addition on cheese making parameters. The sensor signal was recorded and analyzed. The light backscatter ratio followed a sigmoid increase during coagulation and decreased asymptotically after gel cutting. Curd yield and curd moisture content were predicted from the time to the maximum slope of the first derivative of the light backscatter ratio during coagulation and the decrease in the sensor response during syneresis. Whey fat was affected by coagulation kinetics and cutting time, suggesting curd rheological properties at cutting are dominant factors determining fat losses. The proposed technology shows potential for on-line monitoring of coagulation and syneresis. 2007 Elsevier Ltd. All rights reserved..

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces new insights into the hydrochemical functioning of lowland river systems using field-based spectrophotometric and electrode technologies. The streamwater concentrations of nitrogen species and phosphorus fractions were measured at hourly intervals on a continuous basis at two contrasting sites on tributaries of the River Thames – one draining a rural catchment, the River Enborne, and one draining a more urban system, The Cut. The measurements complement those from an existing network of multi-parameter water quality sondes maintained across the Thames catchment and weekly monitoring based on grab samples. The results of the sub-daily monitoring show that streamwater phosphorus concentrations display highly complex dynamics under storm conditions dependent on the antecedent catchment wetness, and that diurnal phosphorus and nitrogen cycles occur under low flow conditions. The diurnal patterns highlight the dominance of sewage inputs in controlling the streamwater phosphorus and nitrogen concentrations at low flows, even at a distance of 7 km from the nearest sewage treatment works in the rural River Enborne. The time of sample collection is important when judging water quality against ecological thresholds or standards. An exhaustion of the supply of phosphorus from diffuse and multiple septic tank sources during storm events was evident and load estimation was not improved by sub-daily monitoring beyond that achieved by daily sampling because of the eventual reduction in the phosphorus mass entering the stream during events. The results highlight the utility of sub-daily water quality measurements and the discussion considers the practicalities and challenges of in situ, sub-daily monitoring.