994 resultados para Consumption pattern
Resumo:
Immunohistochemistry reaction (Peroxidase anti-peroxidase - PAP) was carried out on fifty-two skin biopsies from leprosy patients with the purpose to identify the antigenic pattern in mycobacteria and to study the sensitivity of this method. Five different patterns were found: bacillar, granular, vesicular, cytoplasmatic and deposits, classified according to the antigenic material characteristics. Deposits (thinely particulate material) appeared more frequently, confirming the immunohistochemistry sensitivity to detect small amounts of antigens even when this material is not detected by histochemical stainings.
Resumo:
Sustainable Construction, Materials and Practice, p. 426-432
Resumo:
Demand response concept has been gaining increasing importance while the success of several recent implementations makes this resource benefits unquestionable. This happens in a power systems operation environment that also considers an intensive use of distributed generation. However, more adequate approaches and models are needed in order to address the small size consumers and producers aggregation, while taking into account these resources goals. The present paper focuses on the demand response programs and distributed generation resources management by a Virtual Power Player that optimally aims to minimize its operation costs taking the consumption shifting constraints into account. The impact of the consumption shifting in the distributed generation resources schedule is also considered. The methodology is applied to three scenarios based on 218 consumers and 4 types of distributed generation, in a time frame of 96 periods.
Resumo:
Electric power networks, namely distribution networks, have been suffering several changes during the last years due to changes in the power systems operation, towards the implementation of smart grids. Several approaches to the operation of the resources have been introduced, as the case of demand response, making use of the new capabilities of the smart grids. In the initial levels of the smart grids implementation reduced amounts of data are generated, namely consumption data. The methodology proposed in the present paper makes use of demand response consumers’ performance evaluation methods to determine the expected consumption for a given consumer. Then, potential commercial losses are identified using monthly historic consumption data. Real consumption data is used in the case study to demonstrate the application of the proposed method.
Resumo:
The recent changes concerning the consumers’ active participation in the efficient management of load devices for one’s own interest and for the interest of the network operator, namely in the context of demand response, leads to the need for improved algorithms and tools. A continuous consumption optimization algorithm has been improved in order to better manage the shifted demand. It has been done in a simulation and user-interaction tool capable of being integrated in a multi-agent smart grid simulator already developed, and also capable of integrating several optimization algorithms to manage real and simulated loads. The case study of this paper enhances the advantages of the proposed algorithm and the benefits of using the developed simulation and user interaction tool.
Resumo:
The concept of demand response has drawing attention to the active participation in the economic operation of power systems, namely in the context of recent electricity markets and smart grid models and implementations. In these competitive contexts, aggregators are necessary in order to make possible the participation of small size consumers and generation units. The methodology proposed in the present paper aims to address the demand shifting between periods, considering multi-period demand response events. The focus is given to the impact in the subsequent periods. A Virtual Power Player operates the network, aggregating the available resources, and minimizing the operation costs. The illustrative case study included is based on a scenario of 218 consumers including generation sources.
Resumo:
The current practices in the consumption metering by electricity utilities is currently largely based on monthly consumption reading. The consumption metering device is always calculating the cumulative consumption. Then, it is possible to calculate the difference between the actual and the previous consumption evaluation in order to estimate the monthly consumption. The power systems planning needs in many aspects to handle consumption data obtained for shorter periods, namely in the Demand Response programs planning. The work presented in this paper is based on the application of typical consumption profiles that are previously defined for a certain power system area. Such profiles are then used in order to estimate the 15 minutes consumption for a certain consumer or consumer type.
Resumo:
The integration of the Smart Grid concept into the electric grid brings to the need for an active participation of small and medium players. This active participation can be achieved using decentralized decisions, in which the end consumer can manage loads regarding the Smart Grid needs. The management of loads must handle the users’ preferences, wills and needs. However, the users’ preferences, wills and needs can suffer changes when faced with exceptional events. This paper proposes the integration of exceptional events into the SCADA House Intelligent Management (SHIM) system developed by the authors, to handle machine learning issues in the domestic consumption context. An illustrative application and learning case study is provided in this paper.
Consumption Management of Air Conditioning Devices for the Participation in Demand Response Programs
Resumo:
Demand Response has been taking over the years an extreme importance. There’s a lot of demand response programs, one of them proposed in this paper, using air conditioners that could increase the power quality and decrease the spent money in many ways like: infrastructures and customers energy bill reduction. This paper proposes a method and a study on how air conditioners could integrate demand response programs. The proposed method has been modelled as an energy resources management optimization problem. This paper presents two case studies, the first one with all costumers participating and second one with some of costumers. The results obtained for both case studies have been analyzed.
Resumo:
Demand response programs and models have been developed and implemented for an improved performance of electricity markets, taking full advantage of smart grids. Studying and addressing the consumers’ flexibility and network operation scenarios makes possible to design improved demand response models and programs. The methodology proposed in the present paper aims to address the definition of demand response programs that consider the demand shifting between periods, regarding the occurrence of multi-period demand response events. The optimization model focuses on minimizing the network and resources operation costs for a Virtual Power Player. Quantum Particle Swarm Optimization has been used in order to obtain the solutions for the optimization model that is applied to a large set of operation scenarios. The implemented case study illustrates the use of the proposed methodology to support the decisions of the Virtual Power Player in what concerns the duration of each demand response event.
Resumo:
The recent changes on power systems paradigm requires the active participation of small and medium players in energy management. With an electricity price fluctuation these players must manage the consumption. Lowering costs and ensuring adequate user comfort levels. Demand response can improve the power system management and bring benefits for the small and medium players. The work presented in this paper, which is developed aiming the smart grid context, can also be used in the current power system paradigm. The proposed system is the combination of several fields of research, namely multi-agent systems and artificial neural networks. This system is physically implemented in our laboratories and it is used daily by researchers. The physical implementation gives the system an improvement in the proof of concept, distancing itself from the conventional systems. This paper presents a case study illustrating the simulation of real-time pricing in a laboratory.
Resumo:
This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.
Resumo:
Hepatocellular carcinoma (HCC) is an important type of cancer etiologically related to some viruses, chemical carcinogens and other host or environmental factors associated to chronic liver injury in humans. The tumor suppressor gene p53 is mutated in highly variable levels (0-52%) of HCC in different countries. OBJECTIVE: The objective of the present study was to compare the frequency of aberrant immunohistochemical expression of p53 in HCC occurring in cirrhotic or in non-cirrhotic patients as well as in liver cell dysplasia and in adenomatous hyperplasia. We studied 84 patients with HCC or cirrhosis. RESULTS: We detected p53 altered immuno-expression in 58.3% of patients in Grade III-IV contrasting to 22.2% of patients in Grade I-II (p = 0.02). Nontumorous areas either in the vicinity of HCC or in the 30 purely cirrhotic cases showed no nuclear p53 altered expression, even in foci of dysplasia or adenomatous hyperplasia. No significant difference was found among cases related to HBV, HCV or alcohol. CONCLUSION: The high frequency of p53 immunoexpression in this population is closer to those reported in China and Africa, demanding further studies to explain the differences with European and North American reports.
Resumo:
Background: Little is known about the risk of progression to hazardous alcohol use in people currently drinking at safe limits. We aimed to develop a prediction model (predictAL) for the development of hazardous drinking in safe drinkers. Methods: A prospective cohort study of adult general practice attendees in six European countries and Chile followed up over 6 months. We recruited 10,045 attendees between April 2003 to February 2005. 6193 European and 2462 Chilean attendees recorded AUDIT scores below 8 in men and 5 in women at recruitment and were used in modelling risk. 38 risk factors were measured to construct a risk model for the development of hazardous drinking using stepwise logistic regression. The model was corrected for over fitting and tested in an external population. The main outcome was hazardous drinking defined by an AUDIT score >= 8 in men and >= 5 in women. Results: 69.0% of attendees were recruited, of whom 89.5% participated again after six months. The risk factors in the final predictAL model were sex, age, country, baseline AUDIT score, panic syndrome and lifetime alcohol problem. The predictAL model's average c-index across all six European countries was 0.839 (95% CI 0.805, 0.873). The Hedge's g effect size for the difference in log odds of predicted probability between safe drinkers in Europe who subsequently developed hazardous alcohol use and those who did not was 1.38 (95% CI 1.25, 1.51). External validation of the algorithm in Chilean safe drinkers resulted in a c-index of 0.781 (95% CI 0.717, 0.846) and Hedge's g of 0.68 (95% CI 0.57, 0.78). Conclusions: The predictAL risk model for development of hazardous consumption in safe drinkers compares favourably with risk algorithms for disorders in other medical settings and can be a useful first step in prevention of alcohol misuse.
Resumo:
Chromoblastomycosis (CR) is a subcutaneous chronic mycosis characterized by a granulomatous inflammatory response. However, little is known regarding the pattern of leukocyte subsets in CR and the pathways involved in their recruitment. The objective of this study was to assess the cellular subsets, chemokine, chemokine receptors and enzymes in CR. The inflammatory infiltrate was characterized by immunohistochemistry using antibodies against macrophages (CD68), Langerhans'cells (S100), lymphocytes (CD3, CD4, CD8, CD45RO, CD20 and CD56) and neutrophils (CD15). The expression of MIP-1alpha (Macrophage inflammatory protein-1alpha), chemokine receptors (CXCR3 and CCR1) and enzymes (superoxide dismutase-SOD and nitric oxide synthase-iNOS) was also evaluated by the same method. We observed an increase in all populations evaluated when compared with the controls. Numbers of CD15+ and CD56+ were significantly lower than CD3+, CD4+, CD20+ and CD68+ cells. Statistical analysis revealed an association of fungi numbers with CD3, CD45RO and iNOS-positive cells. Furthermore, MIP-1alpha expression was associated with CD45RO, CD68, iNOS and CXCR3. Our results suggest a possible role of MIP-1alpha and fungi persistence in the cell infiltration in CR sites.