989 resultados para Conformational changes


Relevância:

60.00% 60.00%

Publicador:

Resumo:

$\rm Ca\sp{2+}$-dependent exposure of an N-terminal hydrophobic region in troponin C (TnC) is thought to be important for the regulation of contraction in striated muscle. To study these conformational changes in cardiac troponin (cTnC), the $\varepsilon$C and $\varepsilon$H chemical shifts for all 10 Met residues in cTnC were sequence-specific assigned on NMR spectra using a combination of two dimensional NMR techniques and site-directed mutagenesis. The assigned methyl-Met chemical shifts were used as structural markers to monitor conformational changes induced by $\rm Ca\sp{2+}.$ The results showed that binding of $\rm Ca\sp{2+}$ to the regulatory site in the N-domain induced large changes in the $\varepsilon$H and $\varepsilon$C chemical shifts of Met 45, Met 80, Met 81 in the predicted N-terminal hydrophobic region, but had no effect on the chemical shifts of Met residues located in the C-domain. These results suggest that the $\rm Ca\sp{2+}$-dependent functions of cTnC are mainly through N-terminal domain of cTnC.^ To further define the molecular mechanism by which TnC regulates muscle contraction, single Cys residues were engineered at positions 45, 81, 84 or 85 in the N-terminal hydrophobic region of cTnC to provide sites for attachment of specific blocking groups. Blocking groups were coupled to these Cys residues in cTnC mutants and the covalent adducts were tested for activity in TnC-extracted myofibrils. Covalent modification of cTnC(C45) had no effect on maximal myofibril ATPase activity. Greatly decreased myofibril ATPase activity resulted when the peptide or biotin was conjugated to residue 81 in cTnC(C81), while less inhibition resulted from covalent modification of cTnC(C84) or cTnC(C85). The results suggest that limited sites of the N-terminal hydrophobic region in cTnC are important for transducing the $\rm Ca\sp{2+}$ signal to troponin I (TnI) and are sensitive to modification, while other regions are less important or can adapt to steric hindrances introduced by bulky blocking groups.^ Although the exposed TnI interaction site in the N-terminal hydrophobic region of TnC is crucial for function of TnC, other regions in the N-domain of TnC may also participate in transducing the $\rm Ca\sp{2+}$ signal and conferring the maximal activation of actomyosin ATPase. The interactions between the B-/C-helices of cTnC and cTnI were characterized using a combination of site-directed mutagenesis, fluorescence and covalent modification. The results suggest that the $\rm Ca\sp{2+}$-dependent interactions of the B-/C-helices of cTnC with TnI may be required for the maximal activation of muscle contraction. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sensory rhodopsins I and II (SRI and SRII) are visual pigment-like phototaxis receptors in the archaeon Halobacterium salinarum. The receptor proteins each consist of a single polypeptide that folds into 7 $\alpha$-helical membrane-spanning segments forming an internal pocket where the chromophore retinal is bound. They transmit signals to their tightly bound transducer proteins, HtrI and HtrII, respectively, which in turn control a phosphotransfer pathway modulating the flagellar motors. SRI-HtrI mediates attractant responses to orange-light and repellent responses to UV light, while SRII-HtrII mediates repellent response to blue light. Experiments were designed to analyze the molecular processes in the SR-Htr complexes responsible for receptor activation, which previously had been shown by our laboratory to involve proton transfer reactions of the retinylidene Schiff base in the photoactive site, transfer of signals from receptor to transducer, and signaling specificity by the receptor-transducer complex.^ Site-directed mutagenesis and laser-flash kinetic spectroscopy revealed that His-166 in SRI (i) plays a role in the proton transfers both to and from the Schiffbase, either as a structurally critical residue or possibly as a direct participant, (ii) is involved in the modulation of SIU photoreaction kinetics by HtrI, and (iii) modulates the pKa of Asp-76, an important residue in the photoactive site, through a long-distance electrostatic interaction. Computerized cell tracking and motion analysis demonstrated that (iv) His-166 is crucial in phototaxis signaling: a spectrum of substitutions either eliminate signaling or greatly perturb the activation process that produces attractant and repellent signaling states of the receptor.^ The signaling states of SRI are communicated to HtrI, whose oligomeric structure and conformational changes were investigated by engineered sulfhydryl probes. It was found that signaling by the SRI-HtrI complex involves reversible conformational changes within a preexisting HtrI dimer, which is likely accomplished through a slight winding or unwinding of the two HtrT monomers via their loose coiled coil association. To elucidate which domains of the Htr dimers confer specificity for interaction with SRI or SRII, chimeras of HtrI and HtrII were constructed. The only determinant needed for functional and specific interaction with SRI or SRII was found to be the four transmembrane segments of the HtrI or HtrII dimers, respectively. The entire cytoplasmic parts of HtrI and HtrII, which include the functionally important signaling and adaptation domains, were interchangeable.^ These observations support a model in which SRI and SRII undergo conformational changes coupled to light-induced proton transfers in their photoactive sites, and that lateral helix-helix interactions with their cognate transducers' 4-helix bundle in the membrane relay these conformational changes into different states of the Htr proteins which regulate the down-stream phosphotransfer pathway. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sodium-proton antiporters rapidly exchange protons and sodium ions across the membrane to regulate intracellular pH, cell volume, and sodium concentration. How ion binding and release is coupled to the conformational changes associated with transport is not clear. Here, we report a crystal form of the prototypical sodium-proton antiporter NhaA from Escherichia coli in which the protein is seen as a dimer. In this new structure, we observe a salt bridge between an essential aspartic acid (Asp163) and a conserved lysine (Lys300). An equivalent salt bridge is present in the homologous transporter NapA, but not in the only other known crystal structure of NhaA, which provides the foundation of most existing structural models of electrogenic sodium-proton antiport. Molecular dynamics simulations show that the stability of the salt bridge is weakened by sodium ions binding to Asp164 and the neighboring Asp163. This suggests that the transport mechanism involves Asp163 switching between forming a salt bridge with Lys300 and interacting with the sodium ion. pKa calculations suggest that Asp163 is highly unlikely to be protonated when involved in the salt bridge. As it has been previously suggested that Asp163 is one of the two residues through which proton transport occurs, these results have clear implications to the current mechanistic models of sodium-proton antiport in NhaA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kinases are part of a complex network of signaling pathways that enable a cell to respond to changes in environmental conditions in a regulated and coordinated way. For example, Glycogen Synthase Kinase 3 beta (GSK3β) modulates conformational changes, protein-protein interaction, protein degradation, and activation of unique domains in proteins that transduce signals from the extracellular milieu to the nucleus. ^ In this project, I investigated the expression and function that GSK3β exhibits in prostate cells. The capacity of GSK3β to regulate two transcription factors (JUN and CREB), which are known to be inversely utilized in prostate tumor cells, was measured. JUN/AP1 is constitutively activated in PC-3 cells; whereas, CREB/CRE activity is ∼20 fold less than the former. GSK3β overexpression obliterates JUN/AP1 activity. With respect to CREB GSK3β increases CREB/CRE activity. Cellular levels of active GSK3β can determine whether JUN or CREB is preferentially active in the PC-3s. Theoretically, in response to a particular cellular context or stimulus, a cell may coordinate JUN and CREB function by regulating GSK3β.^ A comparison of various prostate cell lines showed that active GSK3β is less expressed in normal prostate epithelial cells than in tumor cells. Differentially expressed active (GSK3β) may correlate with progression of prostate carcinoma. If a known marker associated with carcinoma of the prostate could be shown to be regulated by GSK3β then, further study of GSK3β may lead to a better understanding of both possible prevention of the disease and improved therapy for advanced stages. ^ The androgen receptor (AR) is an intriguing phosphoprotein whose regulation is potentially determined by a variety of kinases. One of these is (GSK3β) I found that (GSK3β) is a regulator of the androgen receptor in both the unliganded and liganded states. It can inhibit AR function as measured by reporter assays. Also, GSK3β associates with the AR at the DNA binding domain because deletion constructs expressing either the n-terminus or the c-terminus (both having the DBD in common) immunoprecipitated with GSK3β. Increased understanding of how GSK3β functions in prostate cancer would provide clues into how (1) certain signal pathways are coordinated and (2) the androgen receptor may be regulated. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitric oxide (NO) transduces most of its biological effects through activation of the heterodimeric enzyme, soluble guanylyl cyclase (sGC). Activation of sGC results in the production of 3′,5 ′-cyclic guanosine monophosphate (cGMP) from 5′ -guanosine triphosphate (GTP). In this thesis, we demonstrate a novel protein interaction between CCT (chaperonin containing t-complex polypeptide) subunit η and the α1β1 isoform of sGC. Using the yeast-two-hybrid system, CCTη was found to interact with the N-terminal portion of β1 subunit of sGC. This interaction was then confirmed in vitro with a co-immunoprecipitation from mouse brain. The interaction between these two proteins was further supported by a co-localization of the proteins within rat brain. Using the yeast-two-hybrid system, CCTη was found to bind to the N-terminal portion of sGC. In vitro assays with purified CCTη and Sf9 lysate expressing sGC resulted in a 33% inhibition of sodium nitroprusside (SNP)-stimulated sGC activity. The same assays were then performed using BAY41-2272, an NO-independent allosteric sGC activator, and CCTη had no effect on this activity. Furthermore, CCTη had no effect on the activity of αβCys105 sGC a constitutively active mutant that lacks a heme group. Of note is the fact that the full-length CCTη-expressing bacterial lysate inhibited the activity of sGC-expressing Sf9 lysate by 48% compared with GST alone. This indicates that the amino terminal 94 amino acids of CCTη are important to the inhibition of sGC activity. Lastly, a 45% inhibition of sGC activity by CCTη was seen in vivo in BE2 cells stably transfected with CCTη and treated with SNP. The fact that the inhibition of sGC was more pronounced with bacterial lysate expressing CCTη versus the purified CCTη implies that some factor in the bacterial lysate enhances the inhibitory effect of CCTη. Because the level of inhibition seen in bacterial lysate and in vivo experiments is similar, might imply that the factor that aids in CCTη effect on sGC is conserved. Together, these data suggest that CCTη is a novel type of sGC inhibitor that inhibits sGC by modifying the binding of NO to the heme group or the subsequent conformational changes induced by NO binding. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The molecular complex of sensory rhodopsin I (SRI) and its transducer HtrI mediate color-sensitive phototaxis in the archaeon Halobacterium salinarum. Orange light causes an attractant response by a one-photon reaction and white light causes a repellent response by a two-photon reaction. Three aspects of this molecular complex were explored: (i) We determined the stoichiometry of SRI and HtrI to be 2:2 by gene fusion analysis. A SRI-HtrI fusion protein was expressed in H. salinarum and shown to mediate 1-photon and 2-photon phototaxis responses comparable to wild-type complex. Disulfide crosslinking demonstrated that the fusion protein is a homodimer in the membrane. Measurement of photochemical reaction kinetics and pH titration of absorption spectra established that both SRI domains are complexed to HtrI in the fusion protein, and therefore the stoichiometry is 2:2. (ii) Cytoplasmic channel closure of SRI by HtrI, an important aspect of their interaction, was investigated by incremental HtrI truncation. We found that binding of the membrane-embedded portion of HtrI is insufficient for channel closure, whereas cytoplasmic extension of the second HtrI transmembrane helix by 13 residues blocks proton conduction through the channel as well as full-length HtrI. The closure activity is localized to 5 specific residues, each of which incrementally contributes to reduction of proton conductivity. Moreover, these same residues in the dark incrementally and proportionally increase the pKa of the Asp76 counterion to the protonated Schiff base chromophore. We conclude that this critical region of HtrI alters the dark conformation of SRI as well as light-induced channel opening. (iii) We developed a procedure for reconstituting HtrI-free SRI and the SRI/HtrI complex into liposomes, which exhibit photocycles with opened and closed cytoplasmic channels, respectively, as in the membrane. This opens the way for study of the light-induced conformational change and the interaction in vitro by fluorescence and spin-labeling. Single-cysteine mutations were introduced into helix F of SRI, labeled with a nitroxide spin probe and a fluorescence probe, reconstituted into proteoliposomes, and light-induced conformational changes detected in the complex. The probe signals can now be used as the readout of signaling to analyze mutants and the kinetics of signal relay. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ion channels play a crucial role in the functioning of different systems of the body because of their ability to bridge the cell membrane and allow ions to pass in and out of the cell. Ionotropic glutamate receptors are one class of these important proteins and have been shown to be critical in propagating synaptic transmission in the central nervous system and in other diverse functions throughout the body. Because of their wide-ranging effects, this family of receptors is an important target for structure-function investigations to understand their mechanism of action. ^ α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are one subtype of glutamate receptors and have been shown to be the primary receptors involved in rapid excitatory signaling in the central nervous system. Agonist binding to the extracellular ligand binding domain of these receptors causes various conformational changes that culminate in formation of the ion channel. Previous structural investigations have provided important information about their mechanism of action, including uncovering a relationship between the degree of cleft closure in the binding domain and activation of the receptor. However, what question remains unanswered is how specific interactions between the agonist and the protein interplay with cleft closure to mediate receptor activation. ^ To investigate this question, I applied a multiscale approach to investigate the effects of agonist binding on various levels. Vibrational spectroscopy was utilized to investigate molecular-level interactions in the binding pocket, and fluorescence resonance energy transfer (FRET) was employed to measure cleft closure in the isolated ligand binding domain. The results of these studies in the isolated binding domain were then correlated to activation of the full receptor. These investigations showed a relationship between the strength of the interaction at the α-amine group of the agonist and extent of receptor activation, where a stronger interaction correlated to a larger activation, which was upheld even when the extent of cleft closure did not correlate to activation. These results show that this interaction at the α-amine group is critical in mediating the allosteric mechanism of activation and provide a bit more insight into how agonist binding is coupled to channel gating in AMPA receptors. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heterotrimeric G protein-mediated signal transduction is one of numerous means that cells utilize to respond to external stimuli. G proteins consist of α, β andγ subunits. Extracellular ligands bind to seven-transmembrane helix receptors, triggering conformational changes. This is followed by activation of coupled G proteins through the exchange of GDP for GTP on the Gα subunit. Once activated, Gα-GTP dissociates from the βγ dimer. Both of these two moieties can interact with downstream effectors, such as adenylyl cyclase, phospholipase C, phosphodiesterases, or ion channels, leading to a series of changes in cellular metabolism and physiology. ^ Neurospora crassa is a eukaryotic multicellular filamentous fungus, with asexual/vegetative and sexual phases to its life cycle. Three Gα (GNA-1, GNA-2, GNA-3) and one Gβ (GNB-1) proteins have been identified in this organism. This dissertation investigates GNA-1 and GNB-1 mediated signaling pathways in N. crassa. ^ GNA-1 was the first identified microbial Gα that belongs to a mammalian superfamily (Gαi). Deletion of GNA-1 leads to multiple defects in N. crassa. During the asexual cycle, Δgna-1 strains display a slower growth rate and delayed conidiation on solid medium. In the sexual cycle, the Δgna-1 mutant is male-fertile but female-sterile. Biochemical studies have shown that Δ gna-1 strains have lower adenosine 3′–5 ′ cyclic monophosphate (cAMP) levels than wild type under conditions where phenotypic defects are observed. In this thesis work, strains containing one of two GTPase-deficient gna-1 alleles (gna-1 R178C, gna-1Q204L) leading to constitutive activation of GNA-1 have been constructed and characterized. Activation of GNA-1 causes uncontrolled aerial hyphae proliferation, elevated sensitivity to heat and oxidative stresses, and lower carotenoid synthesis. To further study the function of GNA-1, constructs to enable expression of mammalian Gαi superfamily members were transformed into a Δ gna-1 strain, and complementation of Δgna-1 defects investigated. Gαs, which is not a member of Gα i superfamily was used as a control. These mammalian Gα genes were able to rescue the vegetative growth rate defect of the Δ gna-1 strain in the following order: Gαz > Gα o > Gαs > Gαt > Gαi. In contrast, only Gαo was able to complement the sexual defect of a Δgna-1 strain. With regard to the thermotolerance phenotype, none of the mammalian Gα genes restored the sensitivity to a wild type level. These results suggest that GNA-1 regulates two independent pathways during the vegetative and sexual cycles in N. crassa. ^ GNB-1, a G protein β subunit from N. crassa, was identified and its functions investigated in this thesis work. The sequence of the gnb-1 gene predicts a polypeptide of 358 residues with a molecular mass of 39.7 kDa. GNB-1 exhibits 91% identity to Cryphonectria parasitica CPGB-1, and also displays significant homology with human and Dictyostelium Gβ genes (∼66%). A Δ gnb-1 strain was constructed and shown to exhibit defects in asexual spore germination, vacuole number and size, mass accumulation and female fertility. A novel role for GNB-1 in regulation of GNA-1 and GNA-2 protein levels was also demonstrated. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, electrochemical maltose biosensors based on mutants of the maltose binding protein (MBP) are developed. A ruthenium II complex (Ru II ), which is covalently attached to MBP, serves as an electrochemical reporter of MBP conformational changes. Biosensors were made through direct attachment of Ru II complex modified MBP to gold electrode surfaces. The responses of some individual mutants were evaluated using square wave voltammetry. A maltose-dependent change in Faradic current and capacitance was observed. It is therefore demonstrated that biosensors using generically this family of bacterial periplasmic binding proteins (bPBP) can be made lending themselves to facile biorecognition element preparation and low cost electrochemical transduction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A large superfamily of transmembrane receptors control cellular responses to diverse extracellular signals by catalyzing activation of specific types of heterotrimeric GTP-binding proteins. How these receptors recognize and promote nucleotide exchange on G protein α subunits to initiate signal amplification is unknown. The three-dimensional structure of the transducin (Gt) α subunit C-terminal undecapeptide Gtα(340–350) IKENLKDCGLF was determined by transferred nuclear Overhauser effect spectroscopy while it was bound to photoexcited rhodopsin. Light activation of rhodopsin causes a dramatic shift from a disordered conformation of Gtα(340–350) to a binding motif with a helical turn followed by an open reverse turn centered at Gly-348, a helix-terminating C capping motif of an αL type. Docking of the NMR structure to the GDP-bound x-ray structure of Gt reveals that photoexcited rhodopsin promotes the formation of a continuous helix over residues 325–346 terminated by the C-terminal helical cap with a unique cluster of crucial hydrophobic side chains. A molecular mechanism by which activated receptors can control G proteins through reversible conformational changes at the receptor–G protein interface is demonstrated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An antibody generated to an α-keto amide containing hapten 1 catalyzes the cis-trans isomerization of peptidyl-prolyl amide bonds in peptides and in the protein RNase T1. The antibody-catalyzed peptide isomerization reaction showed saturation kinetics for the cis-substrate, Suc-Ala-Ala-Pro-Phe-pNA, with a kcat/Km value of 883 s−1⋅M−1; the reaction was inhibited by the hapten analog 13 (Ki = 3.0 ± 0.4 μM). Refolding of denatured RNase T1 to its native conformation also was catalyzed by the antibody, with the antibody-catalyzed folding reaction inhibitable both by the hapten 1 and hapten analog 13. These results demonstrate that antibodies can catalyze conformational changes in protein structure, a transformation involved in many cellular processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crystal structure at 2.0-Å resolution of the complex of the Escherichia coli chemotaxis response regulator CheY and the phosphoacceptor-binding domain (P2) of the kinase CheA is presented. The binding interface involves the fourth and fifth helices and fifth β-strand of CheY and both helices of P2. Surprisingly, the two heterodimers in the asymmetric unit have two different binding modes involving the same interface, suggesting some flexibility in the binding regions. Significant conformational changes have occurred in CheY compared with previously determined unbound structures. The active site of CheY is exposed by the binding of the kinase domain, possibly to enhance phosphotransfer from CheA to CheY. The conformational changes upon complex formation as well as the observation that there are two different binding modes suggest that the plasticity of CheY is an essential feature of response regulator function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A dynamic capsid is critical to the events that shape the viral life cycle; events such as cell attachment, cell entry, and nucleic acid release demand a highly mobile viral surface. Protein mass mapping of the common cold virus, human rhinovirus 14 (HRV14), revealed both viral structural dynamics and the inhibition of such dynamics with an antiviral agent, WIN 52084. Viral capsid digestion fragments resulting from proteolytic time-course experiments provided structural information in good agreement with the HRV14 three-dimensional crystal structure. As expected, initial digestion fragments included peptides from the capsid protein VP1. This observation was expected because VP1 is the most external viral protein. Initial digestion fragments also included peptides belonging to VP4, the most internal capsid protein. The mass spectral results together with x-ray crystallography data provide information consistent with a “breathing” model of the viral capsid. Whereas the crystal structure of HRV14 shows VP4 to be the most internal capsid protein, mass spectral results show VP4 fragments to be among the first digestion fragments observed. Taken together this information demonstrates that VP4 is transiently exposed to the viral surface via viral breathing. Comparative digests of HRV14 in the presence and absence of WIN 52084 revealed a dramatic inhibition of digestion. These results indicate that the binding of the antiviral agent not only causes local conformational changes in the drug binding pocket but actually stabilizes the entire viral capsid against enzymatic degradation. Viral capsid mass mapping provides a fast and sensitive method for probing viral structural dynamics as well as providing a means for investigating antiviral drug efficacy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fibrillogenesis of the amyloid β-protein (Aβ) is believed to play a central role in the pathogenesis of Alzheimer’s disease. Previous studies of the kinetics of Aβ fibrillogenesis showed that the rate of fibril elongation is proportional to the concentration of monomers. We report here the study of the temperature dependence of the Aβ fibril elongation rate constant, ke, in 0.1 M HCl. The rate of fibril elongation was measured at Aβ monomer concentrations ranging from 50 to 400 μM and at temperatures from 4°C to 40°C. Over this temperature range, ke increases by two orders of magnitude. The temperature dependence of ke follows the Arrhenius law, ke = A exp (−EA/kT). The preexponential factor A and the activation energy EA are ≈6 × 1018 liter/(mol·sec) and 23 kcal/mol, respectively. Such a high value of EA suggests that significant conformational changes are associated with the binding of Aβ monomers to fibril ends.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 2.0-Å resolution x-ray crystal structure of a novel trimeric antibody fragment, a “triabody,” has been determined. The trimer is made up of polypeptides constructed in a manner identical to that previously described for some “diabodies”: a VL domain directly fused to the C terminus of a VH domain—i.e., without any linker sequence. The trimer has three Fv heads with the polypeptides arranged in a cyclic, head-to-tail fashion. For the particular structure reported here, the polypeptide was constructed with a VH domain from one antibody fused to the VL domain from an unrelated antibody giving rise to “combinatorial” Fvs upon formation of the trimer. The structure shows that the exchange of the VL domain from antibody B1-8, a Vλ domain, with the VL domain from antibody NQ11, a Vκ domain, leads to a dramatic conformational change in the VH CDR3 loop of antibody B1-8. The magnitude of this change is similar to the largest of the conformational changes observed in antibody fragments in response to antigen binding. Combinatorial pairing of VH and VL domains constitutes a major component of antibody diversity. Conformationally flexible antigen-binding sites capable of adapting to the specific CDR3 loop context created upon VH–VL pairing may be employed by the immune system to maximize the structural diversity of the immune response.