980 resultados para Conformal Antennas
Resumo:
Using the superfield formalism, we study the dynamical breaking of gauge symmetry and super-conformal invariance in the N = 1 three-dimensional supersymmetric Chern-Simons model, coupled to a complex scalar superfield with a quartic self-coupling. This is an analogue of the conformally invariant Coleman-Weinberg model in four spacetime dimensions. We show that a mass for the gauge and matter superfields are dynamically generated after two-loop corrections to the effective superpotential. We also discuss the N = 2 extension of our work, showing that the Coleman-Weinberg mechanism in such model is not feasible, because it is incompatible with perturbation theory.
Resumo:
We consider black p-brane solutions of the low-energy string action, computing scalar perturbations. Using standard methods, we derive the wave equations obeyed by the perturbations and treat them analytically and numerically. We have found that tensorial perturbations obtained via a gauge-invariant formalism leads to the same results as scalar perturbations. No instability has been found. Asymptotically, these solutions typically reduce to a AdSd((p+2)) x Sd((8-p)) space which, in the framework of Maldacena's conjecture, can be regarded as a gravitational dual to a conformal field theory defined in a (p+1)-dimensional flat space-time. The results presented open the possibility of a better understanding the AdS/CFT correspondence, as originally formulated in terms of the relation among brane structures and gauge theories.
Resumo:
Using the density matrix renormalization group, we investigate the Renyi entropy of the anisotropic spin-s Heisenberg chains in a z-magnetic field. We considered the half-odd-integer spin-s chains, with s = 1/2, 3/2, and 5/2, and periodic and open boundary conditions. In the case of the spin-1/2 chain we were able to obtain accurate estimates of the new parity exponents p(alpha)((p)) and p(alpha)((o)) that gives the power-law decay of the oscillations of the alpha-Renyi entropy for periodic and open boundary conditions, respectively. We confirm the relations of these exponents with the Luttinger parameter K, as proposed by Calabrese et al. [Phys. Rev. Lett. 104, 095701 (2010)]. Moreover, the predicted periodicity of the oscillating term was also observed for some nonzero values of the magnetization m. We show that for s > 1/2 the amplitudes of the oscillations are quite small and get accurate estimates of p(alpha)((p)) and p(alpha)((o)) become a challenge. Although our estimates of the new universal exponents p(alpha)((p)) and p(alpha)((o)) for the spin-3/2 chain are not so accurate, they are consistent with the theoretical predictions.
Resumo:
We present four estimators of the shared information (or interdepency) in ground states given that the coefficients appearing in the wave function are all real non-negative numbers and therefore can be interpreted as probabilities of configurations. Such ground states of Hermitian and non-Hermitian Hamiltonians can be given, for example, by superpositions of valence bond states which can describe equilibrium but also stationary states of stochastic models. We consider in detail the last case, the system being a classical not a quantum one. Using analytical and numerical methods we compare the values of the estimators in the directed polymer and the raise and peel models which have massive, conformal invariant and nonconformal invariant massless phases. We show that like in the case of the quantum problem, the estimators verify the area law with logarithmic corrections when phase transitions take place.
Resumo:
We analyze the finite-size corrections to entanglement in quantum critical systems. By using conformal symmetry and density functional theory, we discuss the structure of the finite-size contributions to a general measure of ground state entanglement, which are ruled by the central charge of the underlying conformal field theory. More generally, we show that all conformal towers formed by an infinite number of excited states (as the size of the system L -> infinity) exhibit a unique pattern of entanglement, which differ only at leading order (1/L)(2). In this case, entanglement is also shown to obey a universal structure, given by the anomalous dimensions of the primary operators of the theory. As an illustration, we discuss the behavior of pairwise entanglement for the eigenspectrum of the spin-1/2 XXZ chain with an arbitrary length L for both periodic and twisted boundary conditions.
Resumo:
This paper presents an analysis of the performance of a baseband multiple-input single-output (MISO) time reversal ultra-wideband system (TR-UWB) incorporating a symbol spaced decision feedback equalizer (DFE). A semi-analytical performance analysis based on a Gaussian approach is considered, which matched well with simulation results, even for the DFE case. The channel model adopted is based on the IEEE 802.15.3a model, considering correlated shadowing across antenna elements. In order to provide a more realistic analysis, channel estimation errors are considered for the design of the TR filter. A guideline for the choice of equalizer length is provided. The results show that the system`s performance improves with an increase in the number of transmit antennas and when a symbol spaced equalizer is used with a relatively small number of taps compared to the number of resolvable paths in the channel impulse response. Moreover, it is possible to conclude that due to the time reversal scheme, the error propagation in the DFE does not play a role in the system`s performance.
A unified and complete construction of all finite dimensional irreducible representations of gl(2|2)
Resumo:
Representations of the non-semisimple superalgebra gl(2/2) in the standard basis are investigated by means of the vector coherent state method and boson-fermion realization. All finite-dimensional irreducible typical and atypical representations and lowest weight (indecomposable) Kac modules of gl(2/2) are constructed explicity through the explicit construction of all gl(2) circle plus gl(2) particle states (multiplets) in terms of boson and fermion creation operators in the super-Fock space. This gives a unified and complete treatment of finite-dimensional representations of gl(2/2) in explicit form, essential for the construction of primary fields of the corresponding current superalgebra at arbitrary level.
Resumo:
A new type of nonlocal currents (quasi-particles), which we call twisted parafermions, and its corresponding twisted Z-algebra are found. The system consists of one spin-1 bosonic field and six nonlocal fields of fractional spins. Jacobi-type identities for the twisted parafermions are derived, and a new conformal field theory is constructed from these currents. As an application, a parafermionic representation of the twisted affine current algebra A(2)((2)) is given.
Resumo:
Integrable Kondo impurities in the one-dimensional supersymmetric U model of strongly correlated electrons are studied by means of the boundary graded quantum inverse scattering method. The boundary K-matrices depending on the local magnetic moments of the impurities are presented as non-trivial realizations of the reflection equation algebras in an impurity Hilbert space. Furthermore, the model Hamiltonian is diagonalized and the Bethe ansatz equations are derived. It is interesting to note that our model exhibits a free parameter in the bulk Hamiltonian but no free parameter exists on the boundaries. This is in sharp contrast to the impurity models arising from the supersymmetric t-J and extended Hubbard models where there is no free parameter in the bulk but there is a free parameter on each boundary.
Resumo:
Background and purpose: To evaluate biochemical control and treatment related toxicity of patients with localized adenocarcinoma of the prostate treated with high dose-rate brachytherapy (HDRB) combined with conventional 2D or 3D-conformal external beam irradiation (EBI). Material and methods: Four-hundred and three patients treated between December 2000 and March 2004. HDRB was delivered with three fractions of 5.5-7 Gy with a single implant, followed by 45 Gy delivered with 2D or 3D conformal EBI. Results: The median follow-up was 48.4 months. Biochemical failure (BF) occurred in 9.6% according to both ASTRO and Phoenix consensus criteria. Mean time to relapse was 13 and 26 months, respectively. The 5-year BF free survival using the ASTRO criteria was 94.3%, 86.9% and 86.6% for the low, intermediate and high risk groups, respectively; using Phoenix criteria, 92.4%, 88.0% and 85.3%, respectively. The only predictive factor of BF in the multivariate analysis by both ASTRO and Phoenix criteria was the presence of prostate nodules detected by digital palpation, and patients younger than 60 years presented a higher chance of failure using Phoenix criteria only. Conclusions: Treatment scheme is feasible and safe with good efficacy. (C) 2011 Elsevier Ireland Ltd All rights reserved. Radiotherapy and Oncology 98 (2011) 169-174
Resumo:
This paper reports on the design and development of a dividing/phasing network for a compact switched-beam array antenna for Land-vehicle mobile satellite communications, The device is formed by a switched radial divider/combiner and 1-bit phase shifters and generates a sufficient number of beams for the proper satellite tracking.
Resumo:
In this paper, a small transmit array of transistor amplifiers illuminated by a passive array of microstrip patches in the reactive near-field region is investigated as a power-combining structure. The two cases considered are when the transmit array radiates in a free space and when a passive array similar to the one used for illumination collects the radiated power. A comparison of the performance of the proposed structure against the alternative one, which uses a conventional horn antenna as a power-launching/receiving device, is also presented.
Resumo:
This paper is concerned with the design of a Ku-band active transmit-array module of transistor amplifiers excited by either a pyramidal horn or a patch array Optimal distances between the active transmit array and the signal-launching:receiving device, which is either a passive corporate-fed array or a horn, are determined to maximise the power gain at a design frequency: Having established these conditions, the complete structure is investigated in terms of operational bandwidth and near-field and far-field distributions measured at the output side of the transmit array, The experimental results show that the use of a corporate-fed array as an illuminating/receiving device gives higher gain and significantly larger operational bandwidth, An explanation for this behavior is sought.
Resumo:
A model is introduced for two reduced BCS systems which are coupled through the transfer of Cooper pairs between the systems. The model may thus be used in the analysis of the Josephson effect arising from pair tunneling between two strongly coupled small metallic grains. At a particular coupling strength the model is integrable and explicit results are derived for the energy spectrum, conserved operators, integrals of motion, and wave function scalar products. It is also shown that form factors can be obtained for the calculation of correlation functions. Furthermore, a connection with perturbed conformal field theory is made.
Resumo:
The numerical implementation of the complex image approach for the Green's function of a mixed-potential integralequation formulation is examined and is found to be limited to low values of k(0) rho (in this context k(0) rho = 2 pirho/ lambda(0), where rho is the distance between the source and the field points of the Green's function and lambda(0) is the free space wavelength). This is a clear limitation for problems of large dimension or high frequency where this limit is easily exceeded. This paper examines the various strategies and proposes a hybrid method whereby most of the above problems can be avoided. An efficient integral method that is valid for large k(0) rho is combined with the complex image method in order to take advantage of the relative merits of both schemes. It is found that a wide overlapping region exists between the two techniques allowing a very efficient and consistent approach for accurately calculating the Green's functions. In this paper, the method developed for the computation of the Green's function is used for planar structures containing both lossless and lossy media.