995 resultados para Concrete filled steeltube


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A linear stability analysis is presented to study the self-organized instabilities of a highly compliant elastic cylindrical shell filled with a viscous liquid and submerged in another viscous medium. The prototype closely mimics many components of micro-or nanofluidic devices and biological processes such as the budding of a string of pearls inside cells and sausage-string formation of blood vessels. The cylindrical shell is considered to be a soft linear elastic solid with small storage modulus. When the destabilizing capillary force derived from the cross-sectional curvature overcomes the stabilizing elastic and in-plane capillary forces, the microtube can spontaneously self-organize into one of several possible configurations; namely, pearling, in which the viscous fluid in the core of the elastic shell breaks up into droplets; sausage strings, in which the outer interface of the mircrotube deforms more than the inner interface; and wrinkles, in which both interfaces of the thin-walled mircrotube deform in phase with small amplitudes. This study identifies the conditions for the existence of these modes and demonstrates that the ratios of the interfacial tensions at the interfaces, the viscosities, and the thickness of the microtube play crucial roles in the mode selection and the relative amplitudes of deformations at the two interfaces. The analysis also shows asymptotically that an elastic fiber submerged in a viscous liquid is unstable for Y = gamma/(G(e)R) > 6 and an elastic microchannel filled with a viscous liquid should rupture to form spherical cavities (pearling) for Y > 2, where gamma, G(e), and R are the surface tension, elastic shear modulus, and radius, respectively, of the fiber or microchannel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tension-softening parameters for different concrete-concrete interfaces are determined using the bimaterial cracked hinge model. Beams of different sizes having a jointed interface between two different strengths of concrete are tested under three-point bending (TPB). The load versus crack mouth opening displacement (CMOD) results are used to obtain the stress-crack opening relation through an inverse analysis. In addition, the fracture energy, tensile strength, and modulus of elasticity are also computed from the inverse analysis. The fracture properties are used in the nonlinear fracture mechanics analysis of a concrete patch-repaired beam to determine its load-carrying capacity when repaired with concrete of different strengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study singular fractal functions (SFF) were used to generate stress-strain plots for quasibrittle material like concrete and cement mortar and subsequently stress-strain plot of cement mortar obtained using SFF was used for modeling fracture process in concrete. The fracture surface of concrete is rough and irregular. The fracture surface of concrete is affected by the concrete's microstructure that is influenced by water cement ratio, grade of cement and type of aggregate 11-41. Also the macrostructural properties such as the size and shape of the specimen, the initial notch length and the rate of loading contribute to the shape of the fracture surface of concrete. It is known that concrete is a heterogeneous and quasi-brittle material containing micro-defects and its mechanical properties strongly relate to the presence of micro-pores and micro-cracks in concrete 11-41. The damage in concrete is believed to be mainly due to initiation and development of micro-defects with irregularity and fractal characteristics. However, repeated observations at various magnifications also reveal a variety of additional structures that fall between the `micro' and the `macro' and have not yet been described satisfactorily in a systematic manner [1-11,15-17]. The concept of singular fractal functions by Mosolov was used to generate stress-strain plot of cement concrete, cement mortar and subsequently the stress-strain plot of cement mortar was used in two-dimensional lattice model [28]. A two-dimensional lattice model was used to study concrete fracture by considering softening of matrix (cement mortar). The results obtained from simulations with lattice model show softening behavior of concrete and fairly agrees with the experimental results. The number of fractured elements are compared with the acoustic emission (AE) hits. The trend in the cumulative fractured beam elements in the lattice fracture simulation reasonably reflected the trend in the recorded AE measurements. In other words, the pattern in which AE hits were distributed around the notch has the same trend as that of the fractured elements around the notch which is in support of lattice model. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A reliable method for service life estimation of the structural element is a prerequisite for service life design. A new methodology for durability-based service life estimation of reinforced concrete flexural elements with respect to chloride-induced corrosion of reinforcement is proposed. The methodology takes into consideration the fuzzy and random uncertainties associated with the variables involved in service life estimation by using a hybrid method combining the vertex method of fuzzy set theory with Monte Carlo simulation technique. It is also shown how to determine the bounds for characteristic value of failure probability from the resulting fuzzy set for failure probability with minimal computational effort. Using the methodology, the bounds for the characteristic value of failure probability for a reinforced concrete T-beam bridge girder has been determined. The service life of the structural element is determined by comparing the upper bound of characteristic value of failure probability with the target failure probability. The methodology will be useful for durability-based service life design and also for making decisions regarding in-service inspections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In-filled and Ge-doped Co4Sb12 skutterudites materials were synthesized by an induction melting process which was followed by annealing at 650 degrees C for 7 days. A structural, compositional, and morphological study was carried out by X-ray diffraction (XRD), electron probe micro analysis (EPMA), and scanning electron microscopy (SEM). The formation of a single skutterudite phase (delta-CoSb3) was confirmed by XRD and the composition of all the samples was verified by EPMA. The homogeneity and morphology of the samples was observed by potential Seebeck microprobe (PSM) and SEM, respectively. The PSM result confirmed the inhomogeneity of the samples. The temperature dependence of the Seebeck coefficient, electrical conductivity, and thermal conductivity were measured in the temperature range of 300-650 K. The samples of In0.16Co4Sb12-xGex (x = 0.05, 0.1, and 0.2) show a negative Seebeck coefficient confirming an n-type conductivity and the In0.16Co4Sb11.7Ge0.3 sample shows a positive Seebeck coefficient confirming a p-type conductivity. There was a change in the Seebeck coefficient from an n-type to a p-type at the doping concentration of x = 0.3 due to the excess Ge which increases in hole carrier concentration. Electrical conductivity decreases with an increase in Ge doping concentrations and with increases in temperature due to the bipolar effect. Thermal conductivity increases with an increase in carrier concentration and decreases when the temperature is increased. The highest ZT = 0.58 was achieved by In0.16Co4 Sb11.95Ge0.05 at 673K and In-filled and Ge-doped Co4Sb12 was not effective in improving the figure of merit. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3677982]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical expressions are found for the wavenumbers in an infinite flexible in vacuo I fluid-filled circular cylindrical shell based on different shell-theories using asymptotic methods. Donnell-Mushtari theory (the simplest shell theory) and four higher order theories, namely Love-Timoshenko, Goldenveizer-Novozhilov, Flugge and Kennard-simplified are considered. Initially, in vacuo and fluid-coupled wavenumber expressions are presented using the Donnell-Mushtari theory. Subsequently, the wavenumbers using the higher order theories are presented as perturbations on the Donnell-Mushtari wavenumbers. Similarly, expressions for the resonance frequencies in a finite shell are also presented, using each shell theory. The basic differences between the theories being what they are, the analytical expressions obtained from the five theories allow one to see how these differences propagate into the asymptotic expansions. Also, they help to quantify the difference between the theories for a wide range of parameter values such as the frequency range, circumferential order, thickness ratio of the shell, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a review of recent developments in parametric based acoustic emission (AE) techniques applied to concrete structures. It recapitulates the significant milestones achieved by previous researchers including various methods and models developed in AE testing of concrete structures. The aim is to provide an overview of the specific features of parametric based AE techniques of concrete structures carried out over the years. Emphasis is given to traditional parameter-based AE techniques applied to concrete structures. A significant amount of research on AE techniques applied to concrete structures has already been published and considerable attention has been given to those publications. Some recent studies such as AE energy analysis and b-value analysis used to assess damage of concrete bridge beams have also been discussed. The formation of fracture process zone and the AE energy released during the fracture process in concrete beam specimens have been summarised. A large body of experimental data on AE characteristics of concrete has accumulated over the last three decades. This review of parametric based AE techniques applied to concrete structures may be helpful to the concerned researchers and engineers to better understand the failure mechanism of concrete and evolve more useful methods and approaches for diagnostic inspection of structural elements and failure prediction/prevention of concrete structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron beam irradiation induced, bending of Iron filled, multiwalled carbon nanotubes is reported. Bending of both the carbon nanotube and the Iron contained within the core was achieved using two approaches with the aid of a high resolution electron microscope (HRTEM). In the first approach, bending of the nanotube structure results in response to the irradiation of a pristine kink defect site, while in the second approach, disordered sites induce bending by focusing the electron beam on the graphite walls. The HRTEM based in situ observations demonstrate the potential for using electron beam irradiation to investigate and manipulate the physical properties of confined nanoscale structures. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. doi:10.1063/1.3688083]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scaling laws are represented in power law form and can be utilized to extract the characteristic properties of a new phenomenon with the help of self-similar solutions. In this work, an attempt has been made to propose a scaling law analytically, for plain concrete when subjected to variable amplitude loading. Due to the application of overload on concrete structures, acceleration in the crack growth process takes place. A closed form expression has been developed to capture the acceleration in crack growth rate in conjunction with the principles of dimensional analysis and self-similarity. The proposed model accounts for parameters such as, the tensile strength, fracture toughness, overload effect and the structural size. Knowing the governed and the governing parameters of the physical problem and by using the concepts of self-similarity, a relationship is obtained between the different parameters involved. The predicted results are compared with experimental crack growth data for variable amplitude loading and are found to capture the overload effect with sufficient accuracy. Through a sensitivity analysis, fracture toughness is found to be the most dominant parameter in accelerating the crack length due to application of overload.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents methodologies for residual strength evaluation of concrete structural components using linear elastic and nonlinear fracture mechanics principles. The effect of cohesive forces due to aggregate bridging has been represented mathematically by employing tension softening models. Various tension softening models such as linear, bilinear, trilinear, exponential and power curve have been described with appropriate expressions. These models have been validated by predicting the remaining life of concrete structural components and comparing with the corresponding experimental values available in the literature. It is observed that the predicted remaining life by using power model and modified bi-linear model is in good agreement with the corresponding experimental values. Residual strength has also been predicted using these tension softening models and observed that the predicted residual strength is in good agreement with the corresponding analytical values in the literature. In general, it is observed that the variation of predicted residual moment with the chosen tension softening model follows the similar trend as in the case of remaining life. Linear model predicts large residual moments followed by trilinear, bilinear and power models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, ultrasonic wave propagation analysis in fluid filled single-walled carbon nanotube (SWCNT) is studied using nonlocal elasticity theory. The SWCNT is modeled using Flugge's shell theory, with the wall having axial, circumferential and radial degrees of freedom and also including small scale effects. The fluid inside the SWCNT is assumed as water. Nonlocal governing equations for this system are derived and wave propagation analysis is also carried out. The presence of fluid in SWCNT alters the ultrasonic wave dispersion behavior. The wavenumber and wave velocity are smaller in presence of fluid as compared to the empty SWCNT. The nonlocal elasticity calculation shows that the wavenumber tends to reach the continuum limit at certain frequencies and the corresponding wave velocity tends to zero at those frequencies indicating localization and stationary behavior. It has been shown that the circumferential. waves will propagate non-dispersively at higher frequencies in nonlocality. The magnitudes of wave velocities of circumferential waves are smaller in nonlocal elasticity as compared to local elasticity. We also show that the cut-off frequency depend on the nonlocal scaling parameter and also on the density of the fluid inside the SWCNT, and the axial wavenumber, as the fluid becomes denser the cut-off frequency decreases. The effect of axial wavenumber on the ultrasonic wave behavior in SWCNTS filled with water is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic emission (AE) testing is a well-known method for damage identification of various concrete structures including bridges. This article presents a method to assess damage in reinforced concrete (RC) bridge beams subjected to incremental cyclic loading. The specifications in the standard NDIS-2421 were used to classify the damage in RC bridge beams. Earlier researchers classified the damage occurring in bridge beams by using crack mouth opening displacement (CMOD) and AE released and proposed a standard (NDIS-2421: the Japanese Society for NonDestructive Inspection). In general, multiple cracks take place in RC beams under bending; therefore, utilisation of CMOD for crack detection may not be appropriate. In the present study, the damage in RC beams is classified by using the AE released, deflection, strains in steel and concrete, because the measurement of the strains in steel and concrete is easy and the codes of practice are specified for different limit states (IS-456:2000). The observations made in the present experimental study have some important practical applications in assessing the state of damage of concrete structural members.