864 resultados para Conceptual change model
Resumo:
There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within a framework already familiar to resource managers.
Resumo:
The paper develops the basis for a self-consistent, operationally useful, reactive pollutant dispersion model, for application in urban environments. The model addresses the multi-scale nature of the physical and chemical processes and the interaction between the different scales. The methodology builds on existing techniques of source apportionment in pollutant dispersion and on reduction techniques of detailed chemical mechanisms. © 2005 Published by Elsevier Ltd.
Resumo:
Many aerospace companies are currently making the transition to providing fully-integrated product-service offerings in which their products are designed from the outset with life-cycle considerations in mind. Based on a case study at Rolls-Royce, Civil Aerospace, this paper demonstrates how an interactive approach to process simulation can be used to support the redesign of existing design processes in order to incorporate life-cycle engineering (LCE) considerations. The case study provides insights into the problems of redesigning the conceptual stages of a complex, concurrent engineering design process and the practical value of process simulation as a tool to support the specification of process changes in the context of engineering design. The paper also illustrates how development of a simulation model can provide significant benefit to companies through the understanding of process behaviour that is gained through validating the behaviour of the model using different design and iteration scenarios. Keywords: jet engine design; life-cycle engineering; LCE; process change; design process simulation; applied signposting model; ASM. Copyright © 2011 Inderscience Enterprises Ltd.
Resumo:
Growing environmental concerns caused by natural resource depletion and pollution need to be addressed. One approach to these problems is Sustainable Development, a key concept for our society to meet present as well as future needs worldwide. Manufacturing clearly has a major role to play in the move towards a more sustainable society. However it appears that basic principles of environmental sustainability are not systematically applied, with practice tending to focus on local improvements. The aim of the work presented in this paper is to adopt a more holistic view of the factory unit to enable opportunities for wider improvement. This research analyses environmental principles and industrial practice to develop a conceptual manufacturing ecosystem model as a foundation to improve environmental performance. The model developed focuses on material, energy and waste flows to better understand the interactions between manufacturing operations, supporting facilities and surrounding buildings. The research was conducted in three steps: (1) existing concepts and models for industrial sustainability were reviewed and environmental practices in manufacturing were collected and analysed; (2) gaps in knowledge and practice were identified; (3) the outcome is a manufacturing ecosystem model based on industrial ecology (IE). This conceptual model has novelty in detailing IE application at factory level and integrating all resource flows. The work is a base on which to build quantitative modelling tools to seek integrated solutions for lower resource input, higher resource productivity, fewer wastes and emissions, and lower operating cost within the boundary of a factory unit. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
This conceptual paper will focus on the presentation of the model developed from empirical, qualitative research covering 20 years of analysis on the relationship between culture and entrepreneurship in Poland. It is aimed at proposing a comprehensive framework that describes the development of entrepreneurial culture. In this empirical model culture is understood as a set of values and beliefs held by a social group that endorse and are conducive to entrepreneurial behaviour; while entrepreneurial behaviour is treated as an expected outcome and narrowed down to opening the company. The model proves that the differentiation between entrepreneurship (behaviour) and entrepreneurs (who demonstrate this behaviour) needs to be recognised in future research. The case of Poland offers a historical example, which can shed more light on the process of cultural change and the role of entrepreneurship and entrepreneurs in the development of entrepreneurial culture. In the case presented, the behaviour of entrepreneurs has been identified as the key factor leading to further development.
Resumo:
Background: Obesity is the most important health challenge faced at a global level and represents a rapidly growing problem to the health of populations. Given the escalating global health problem of obesity and its co-morbidities, the need to re-appraise its management is more compelling than ever. The normalisation of obesity within our society and the acceptance of higher body weights have led to individuals being unaware of the reality of their weight status and gravity of this situation. Recognition of the problem is a key component of obesity management and it remains especially crucial to address this issue. A large amount of research has been undertaken on obesity however, limited research has been undertaken using the Health Belief Model. Aim: The aim of the research was to determine factors relating to motivation to change behaviour in individuals who perceive themselves to be overweight and investigate whether the constructs of the Health Belief Model help to explain motivation to change behaviour. Method: The research design was quantitative, correlational and cross-sectional. The design was guided by the Health Belief Model. Data Collection: Data were collected online using a multi-section and multi-item questionnaire, developed from a review of the theoretical and empirical research. Descriptive and inferential statistical analyses were employed to describe relationships between variables. Sample: A sample of 202 men and women who perceived themselves to be overweight participated in the research. Results: Following multivariate regression analysis, perceived barriers to weight loss and perceived benefits of weight loss were significant predictors of motivation to change behaviour. The perceived barriers to weight loss which were significant were psychological barriers to weight loss (p =<0.019) and environmental barriers to physical activity (p=<0.032).The greatest predictor of motivation to change behaviour was the perceived benefits of weight loss (p<0.001). Perceived susceptibility to obesity and perceived severity of obesity did not emerge as significant predictors in this model. Total variance explained by the model was 33.5%. Conclusion: Perceived barriers to weight loss and perceived benefits of weight loss are important determinants of motivation to change behaviour. The current study demonstrated the limited applicability of the Health Belief Model constructs to motivation to change behaviour, as not all core dimensions proved significant predictors of the dependant variable.
Resumo:
As part of a comprehensive effort to predict the development of caking in granular materials, a mathematical model is introduced to model simultaneous heat and moisture transfer with phase change in porous media when undergoing temperature oscillations/cycling. The resulting model partial differential equations were solved using finite-volume procedures in the context of the PHYSICA framework and then applied to the analysis of sugar in storage. The influence of temperature on absorption/desorption and diffusion coefficients is coupled into the transport equations. The temperature profile, the depth of penetration of the temperature oscillation into the bulk solid, and the solids moisture content distribution were first calculated, and these proved to be in good agreement with experimental data. Then, the influence of temperature oscillation on absolute humidity, moisture concentration, and moisture migration for different parameters and boundary conditions was examined. As expected, the results show that moisture near boundary regions responds faster than farther away from them with surface temperature changes. The moisture absorption and desorption in materials occurs mainly near boundary regions (where interactions with the environment are more pronounced). Small amounts of solids moisture content, driven by both temperature and vapour concentration gradients, migrate between boundary and center with oscillating temperature.
Resumo:
Climate change has already altered the distribution of marine fishes. Future predictions of fish distributions and catches based on bioclimate envelope models are available, but to date they have not considered interspecific interactions. We address this by combining the species-based Dynamic Bioclimate Envelope Model (DBEM) with a size-based trophic model. The new approach provides spatially and temporally resolved predictions of changes in species' size, abundance and catch potential that account for the effects of ecological interactions. Predicted latitudinal shifts are, on average, reduced by 20% when species interactions are incorporated, compared to DBEM predictions, with pelagic species showing the greatest reductions. Goodness-of-fit of biomass data from fish stock assessments in the North Atlantic between 1991 and 2003 is improved slightly by including species interactions. The differences between predictions from the two models may be relatively modest because, at the North Atlantic basin scale, (i) predators and competitors may respond to climate change together; (ii) existing parameterization of the DBEM might implicitly incorporate trophic interactions; and/or (iii) trophic interactions might not be the main driver of responses to climate. Future analyses using ecologically explicit models and data will improve understanding of the effects of inter-specific interactions on responses to climate change, and better inform managers about plausible ecological and fishery consequences of a changing environment.
Resumo:
Harmful algal blooms (HABs), those proliferations of algae that can cause fish kills, contaminate seafood with toxins, form unsightly scums, or detrimentally alter ecosystem function have been increasing in frequency, magnitude, and duration worldwide. Here, using a global modeling approach, we show, for three regions of the globe, the potential effects of nutrient loading and climate change for two HAB genera, pelagic Prorocentrum and Karenia, each with differing physiological characteristics for growth. The projections (end of century, 2090-2100) are based on climate change resulting from the A1B scenario of the Intergovernmental Panel on Climate Change Institut Pierre Simon Laplace Climate Model (IPCC, IPSL-CM4), applied in a coupled oceanographic-biogeochemical model, combined with a suite of assumed physiological 'rules' for genera-specific bloom development. Based on these models, an expansion in area and/or number of months annually conducive to development of these HABs along the NW European Shelf-Baltic Sea system and NE Asia was projected for both HAB genera, but no expansion (Prorocentrum spp.), or actual contraction in area and months conducive for blooms (Karenia spp.), was projected in the SE Asian domain. The implications of these projections, especially for Northern Europe, are shifts in vulnerability of coastal systems to HAB events, increased regional HAB impacts to aquaculture, increased risks to human health and ecosystems, and economic consequences of these events due to losses to fisheries and ecosystem services.