932 resultados para Computed Tomography


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single photon emission with computed tomography (SPECT) hexamethylphenylethyleneamineoxime technetium-99 images were analyzed by an optimal interpolative neural network (OINN) algorithm to determine whether the network could discriminate among clinically diagnosed groups of elderly normal, Alzheimer disease (AD), and vascular dementia (VD) subjects. After initial image preprocessing and registration, image features were obtained that were representative of the mean regional tissue uptake. These features were extracted from a given image by averaging the intensities over various regions defined by suitable masks. After training, the network classified independent trials of patients whose clinical diagnoses conformed to published criteria for probable AD or probable/possible VD. For the SPECT data used in the current tests, the OINN agreement was 80 and 86% for probable AD and probable/possible VD, respectively. These results suggest that artificial neural network methods offer potential in diagnoses from brain images and possibly in other areas of scientific research where complex patterns of data may have scientifically meaningful groupings that are not easily identifiable by the researcher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the fracturing process in low-porous rocks during uniaxial compressive tests considering the original defects and the new mechanical cracks in the material. For this purpose, five different kinds of rocks have been chosen with carbonate mineralogy and low porosity (lower than 2%). The characterization of the fracture damage is carried out using three different techniques: ultrasounds, mercury porosimetry and X-ray computed tomography. The proposed methodology allows quantifying the evolution of the porous system as well as studying the location of new cracks in the rock samples. Intercrystalline porosity (the smallest pores with pore radius < 1 μm) shows a limited development during loading, disappearing rapidly from the porosimetry curves and it is directly related to the initial plastic behaviour in the stress–strain patterns. However, the biggest pores (corresponding to the cracks) suffer a continuous enlargement until the unstable propagation of fractures. The measured crack initiation stress varies between 0.25 σp and 0.50 σp for marbles and between 0.50 σp and 0.85 σp for micrite limestone. The unstable propagation of cracks is assumed to occur very close to the peak strength. Crack propagation through the sample is completely independent of pre-existing defects (porous bands, stylolites, fractures and veins). The ultrasonic response in the time-domain is less sensitive to the fracture damage than the frequency-domain. P-wave velocity increases during loading test until the beginning of the unstable crack propagation. This increase is higher for marbles (between 15% and 30% from initial vp values) and lower for micrite limestones (between 5% and 10%). When the mechanical cracks propagate unstably, the velocity stops to increase and decreases only when rock damage is very high. Frequency analysis of the ultrasonic signals shows clear changes during the loading process. The spectrum of treated waveforms shows two main frequency peaks centred at low (~ 20 kHz) and high (~ 35 kHz) values. When new fractures appear and grow the amplitude of the high-frequency peak decreases, while that of the low-frequency peak increases. Besides, a slight frequency shift is observed towards higher frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of analogue model experiments in geology is to simulate structures in nature under specific imposed boundary conditions using materials whose rheological properties are similar to those of rocks in nature. In the late 1980s, X-ray computed tomography (CT) was first applied to the analysis of such models. In early studies only a limited number of cross-sectional slices could be recorded because of the time involved in CT data acquisition, the long cooling periods for the X-ray source and computational capacity. Technological improvements presently allow an almost unlimited number of closely spaced serial cross-sections to be acquired and calculated. Computer visualization software allows a full 3D analysis of every recorded stage. Such analyses are especially valuable when trying to understand complex geological structures, commonly with lateral changes in 3D geometry. Periodic acquisition of volumetric data sets in the course of the experiment makes it possible to carry out a 4D analysis of the model, i.e. 3D analysis through time. Examples are shown of 4D analysis of analogue models that tested the influence of lateral rheological changes on the structures obtained in contractional and extensional settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES We sought to determine whether the transmural extent of scar (TES) explains discordances between dobutamine echocardiography (DbE) and thallium single-photon emission computed tomography (Tl-SPECT) in the detection of viable myocardium (VM). BACKGROUND Discrepancies between DbE and Tl-SPECT are often attributed to differences between contractile reserve and membrane integrity, but may also reflect a disproportionate influence of nontransmural scar on thickening at DbE. METHODS Sixty patients (age 62 +/- 12 years; 10 women and 50 men) with postinfarction left ventricular dysfunction underwent standard rest-late redistribution Tl-SPECT and DbE. Viable myocardium was identified when dysfunctional segments showed Tl activity >60% on the late-redistribution image or by low-dose augmentation at DbE. Contrast-enhanced magnetic resonance imaging (ceMRI) was used to divide TES into five groups: 0%, 75% of the wall thickness replaced by scar. RESULTS As TES increased, both the mean Tl uptake and change in wall motion score decreased significantly (both p < 0.001). However, the presence of subendocardial scar was insufficient to prevent thickening; >50% of segments still showed contractile function with TES of 25% to 75%, although residual function was uncommon with TES >75%. The relationship of both tests to increasing TES was similar, but Tl-SPECT identified VM more frequently than DbE in all groups. Among segments without scar or with small amounts of scar (50% were viable by SPECT. CONCLUSIONS Both contractile reserve and perfusion are sensitive to the extent of scar. However, contractile reserve may be impaired in the face of no or minor scar, and thickening may still occur with extensive scar. (C) 2004 by the American College of Cardiology Foundation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Left ventricular (LV) volumes have important prognostic implications in patients with chronic ischemic heart disease. We sought to examine the accuracy and reproducibility of real-time 3D echo (RT-3DE) compared to TI-201 single photon emission computed tomography (SPECT) and cardiac magnetic resonance imaging (MRI). Thirty (n = 30) patients (age 62±9 years, 23 men) with chronic ischemic heart disease underwent LV volume assessment with RT-3DE, SPECT, and MRI. Ano vel semi-automated border detection algorithmwas used by RT-3DE. End diastolic volumes (EDV) and end systolic volumes (ESV) measured by RT3DE and SPECT were compared to MRI as the standard of reference. RT-3DE and SPECT volumes showed excellent correlation with MRI (Table). Both RT- 3DE and SPECT underestimated LV volumes compared to MRI (ESV, SPECT 74±58 ml versus RT-3DE 95±48 ml versus MRI 96±54 ml); (EDV, SPECT 121±61 ml versus RT-3DE 169±61 ml versus MRI 179±56 ml). The degree of ESV underestimation with RT-3DE was not significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiolarians in the Arctic Ocean have been studied lately in both plankton and sediment trap samples in the Chukchi Sea area. These studies have shed light on new radiolarian taxa, especially within the order Entactinaria, including two new species of Joergensenium, Joergensenium arcticum from the western Arctic Ocean, so far restricted to the Pacific Winter Water in the Chukchi Sea, and Joergensenium clevei hitherto found in the northern part of the Norwegian Sea south of the Fram Strait. The taxonomic position of the order Entactinaria is discussed and the genus Joergensenium has been emended. We have also observed in detail the internal structure of J. arcticum using Microfocus X-ray Computed Tomography and have utilized three-dimensional imaging for the first time in a species description.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tra le patologie ossee attualmente riconosciute, l’osteoporosi ricopre il ruolo di protagonista data le sua diffusione globale e la multifattorialità delle cause che ne provocano la comparsa. Essa è caratterizzata da una diminuzione quantitativa della massa ossea e da alterazioni qualitative della micro-architettura del tessuto osseo con conseguente aumento della fragilità di quest’ultimo e relativo rischio di frattura. In campo medico-scientifico l’imaging con raggi X, in particolare quello tomografico, da decenni offre un ottimo supporto per la caratterizzazione ossea; nello specifico la microtomografia, definita attualmente come “gold-standard” data la sua elevata risoluzione spaziale, fornisce preziose indicazioni sulla struttura trabecolare e corticale del tessuto. Tuttavia la micro-CT è applicabile solo in-vitro, per cui l’obiettivo di questo lavoro di tesi è quello di verificare se e in che modo una diversa metodica di imaging, quale la cone-beam CT (applicabile invece in-vivo), possa fornire analoghi risultati, pur essendo caratterizzata da risoluzioni spaziali più basse. L’elaborazione delle immagini tomografiche, finalizzata all’analisi dei più importanti parametri morfostrutturali del tessuto osseo, prevede la segmentazione delle stesse con la definizione di una soglia ad hoc. I risultati ottenuti nel corso della tesi, svolta presso il Laboratorio di Tecnologia Medica dell’Istituto Ortopedico Rizzoli di Bologna, mostrano una buona correlazione tra le due metodiche quando si analizzano campioni definiti “ideali”, poiché caratterizzati da piccole porzioni di tessuto osseo di un solo tipo (trabecolare o corticale), incluso in PMMA, e si utilizza una soglia fissa per la segmentazione delle immagini. Diversamente, in casi “reali” (vertebre umane scansionate in aria) la stessa correlazione non è definita e in particolare è da escludere l’utilizzo di una soglia fissa per la segmentazione delle immagini.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

18-Fluorodeoxyglucose (FDG-PET/CT) is an established imaging modality that has been proven to be of benefit in the management of aggressive B-cell non-Hodgkin's lymphoma, such as diffuse large B-cell lymphoma and advanced stage follicular lymphoma. The combination of anatomic and functional imaging afforded by FDG-PET/CT has led to superior sensitivity and specificity in the primary staging, restaging, and assessment of response to treatment of hematological malignancies when compared to FDG-PET and CT alone. The use of FDG-PET/CT for post treatment surveillance imaging remains controversial, and further study is needed to ascertain whether this modality is cost effective and appropriate for use in this setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. To critically evaluate the current literature in an effort to establish the current role of radiologic imaging, advances in computed tomography (CT) and standard film radiography in the diagnosis, and characterization of urinary tract calculi. Conclusion. CT has a valuable role when utilized prudently during surveillance of patients following endourological therapy. In this paper, we outline the basic principles relating to the effects of exposure to ionizing radiation as a result of CT scanning. We discuss the current developments in low-dose CT technology, which have resulted in significant reductions in CT radiation doses (to approximately one-third of what they were a decade ago) while preserving image quality. Finally, we will discuss an important recent development now commercially available on the latest generation of CT scanners, namely, dual energy imaging, which is showing promise in urinary tract imaging as a means of characterizing the composition of urinary tract calculi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patient awareness and concern regarding the potential health risks from ionizing radiation have peaked recently (Coakley et al., 2011) following widespread press and media coverage of the projected cancer risks from the increasing use of computed tomography (CT) (Berrington et al., 2007). The typical young and educated patient with inflammatory bowel disease (IBD) may in particular be conscious of his/her exposure to ionising radiation as a result of diagnostic imaging. Cumulative effective doses (CEDs) in patients with IBD have been reported as being high and are rising, primarily due to the more widespread and repeated use of CT (Desmond et al., 2008). Radiologists, technologists, and referring physicians have a responsibility to firstly counsel their patients accurately regarding the actual risks of ionizing radiation exposure; secondly to limit the use of those imaging modalities which involve ionising radiation to clinical situations where they are likely to change management; thirdly to ensure that a diagnostic quality imaging examination is acquired with lowest possible radiation exposure. In this paper, we synopsize available evidence related to radiation exposure and risk and we report advances in low-dose CT technology and examine the role for alternative imaging modalities such as ultrasonography or magnetic resonance imaging which avoid radiation exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While it is well known that exposure to radiation can result in cataract formation, questions still remain about the presence of a dose threshold in radiation cataractogenesis. Since the exposure history from diagnostic CT exams is well documented in a patient’s medical record, the population of patients chronically exposed to radiation from head CT exams may be an interesting area to explore for further research in this area. However, there are some challenges in estimating lens dose from head CT exams. An accurate lens dosimetry model would have to account for differences in imaging protocols, differences in head size, and the use of any dose reduction methods.

The overall objective of this dissertation was to develop a comprehensive method to estimate radiation dose to the lens of the eye for patients receiving CT scans of the head. This research is comprised of a physics component, in which a lens dosimetry model was derived for head CT, and a clinical component, which involved the application of that dosimetry model to patient data.

The physics component includes experiments related to the physical measurement of the radiation dose to the lens by various types of dosimeters placed within anthropomorphic phantoms. These dosimeters include high-sensitivity MOSFETs, TLDs, and radiochromic film. The six anthropomorphic phantoms used in these experiments range in age from newborn to adult.

First, the lens dose from five clinically relevant head CT protocols was measured in the anthropomorphic phantoms with MOSFET dosimeters on two state-of-the-art CT scanners. The volume CT dose index (CTDIvol), which is a standard CT output index, was compared to the measured lens doses. Phantom age-specific CTDIvol-to-lens dose conversion factors were derived using linear regression analysis. Since head size can vary among individuals of the same age, a method was derived to estimate the CTDIvol-to-lens dose conversion factor using the effective head diameter. These conversion factors were derived for each scanner individually, but also were derived with the combined data from the two scanners as a means to investigate the feasibility of a scanner-independent method. Using the scanner-independent method to derive the CTDIvol-to-lens dose conversion factor from the effective head diameter, most of the fitted lens dose values fell within 10-15% of the measured values from the phantom study, suggesting that this is a fairly accurate method of estimating lens dose from the CTDIvol with knowledge of the patient’s head size.

Second, the dose reduction potential of organ-based tube current modulation (OB-TCM) and its effect on the CTDIvol-to-lens dose estimation method was investigated. The lens dose was measured with MOSFET dosimeters placed within the same six anthropomorphic phantoms. The phantoms were scanned with the five clinical head CT protocols with OB-TCM enabled on the one scanner model at our institution equipped with this software. The average decrease in lens dose with OB-TCM ranged from 13.5 to 26.0%. Using the size-specific method to derive the CTDIvol-to-lens dose conversion factor from the effective head diameter for protocols with OB-TCM, the majority of the fitted lens dose values fell within 15-18% of the measured values from the phantom study.

Third, the effect of gantry angulation on lens dose was investigated by measuring the lens dose with TLDs placed within the six anthropomorphic phantoms. The 2-dimensional spatial distribution of dose within the areas of the phantoms containing the orbit was measured with radiochromic film. A method was derived to determine the CTDIvol-to-lens dose conversion factor based upon distance from the primary beam scan range to the lens. The average dose to the lens region decreased substantially for almost all the phantoms (ranging from 67 to 92%) when the orbit was exposed to scattered radiation compared to the primary beam. The effectiveness of this method to reduce lens dose is highly dependent upon the shape and size of the head, which influences whether or not the angled scan range coverage can include the entire brain volume and still avoid the orbit.

The clinical component of this dissertation involved performing retrospective patient studies in the pediatric and adult populations, and reconstructing the lens doses from head CT examinations with the methods derived in the physics component. The cumulative lens doses in the patients selected for the retrospective study ranged from 40 to 1020 mGy in the pediatric group, and 53 to 2900 mGy in the adult group.

This dissertation represents a comprehensive approach to lens of the eye dosimetry in CT imaging of the head. The collected data and derived formulas can be used in future studies on radiation-induced cataracts from repeated CT imaging of the head. Additionally, it can be used in the areas of personalized patient dose management, and protocol optimization and clinician training.