998 resultados para Compositos polimericos - Propriedades magneticas
Resumo:
Estudou-se o efeito de vários níveis de compactação na densidade do solo, porosidade total e resistência à penetração, objetivando determinar o nível que impede o desenvolvimento das raízes de plantas de soja. O trabalho foi realizado em casa de vegetação, com amostras deformadas do horizonte superficial de uma terra roxa estruturada e de um latossolo roxo, controlando os níveis de compactação e o teor de água. A influência da compactação no desenvolvimento das raízes foi avaliada um mês após a germinação. Os valores de densidade do solo, para um mesmo nível de compactação, foram maiores para a terra roxa estruturada. O teor de água ótimo para a compactação foi de 21,0% para a terra roxa estruturada e de 29,8 para o latossolo roxo. A compactação artificial do solo acarretou aumento da resistência à penetração e diminuição da porosidade total. A elevação da sua densidade de 0,90 para 1,30 kg/m³ para a terra roxa estruturada, e de 0,90 para 1,23 kg/m³ para o latossolo roxo, promoveu, respectivamente, diminuição de 39 e de 41% na massa seca das raízes. O desenvolvimento das raízes das plantas ficou impedido quando a densidade do solo atingiu valores de 1,30 e 1,23 kg/m³, respectivamente, para a terra roxa estruturada e o latossolo roxo.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The study of the physical and mechanic properties is an analysis of unquestioned importance on the production of the ceramic materials. In the region of the Recôncavo Baiano, there are ceramic and small brick factories, that still use rudimentary techniques, where the necessity of characterization of raw materials is denounced by the quality of the final product. The present work has for objective to study the behavior of the clay proceeding from the region of the Recôncavo, between the cities of Candeias and Camaçari/Ba, with addition of 5, 10 and 15% by weight of brick scraps, trying to optimize the physic and mechanical properties of the final product, aiming a better possibility of being manufactured, mechanic resistance, low linear retraction and water absorption. The brick scraps and the clay were characterized by FRX, DRX, TG, ATD and the granulometric analysis. Samples for testing where prepared by uniaxial pressing at 25Mpa, in 60x20x5mm size. The evaluated technological properties were: linear retraction, water absorption, apparent porosity and flexural strength. The samples were burned in electric oven in the temperatures of 850º, 950º and 1050ºC and compared its mechanical properties and the gresification. With addition of 15% by weight of brick scraps and burning at 900º-1000ºC the samples showed properties superior to that clay
Resumo:
In this study were conducted experimental procedures for determination of variation of the expandability of rigid polyurethane foam (PUR) from a natural oil polyol (NOP), specifically the Castor oil plant, Ricinus communis, pure and additions of the vermiculite in phase dispersed in different percentage within a range from 0% to 20%, mass replacement. From the information acquired, were defined the parameters for production of bodies of test, plates obtained through controlled expansion, with the final volume fixed. Initially, the plates were subjected to thermal performance tests and evaluated the temperature profiles, to later be extracted samples duly prepared in accordance with the conditions required for each test. Was proceeded then the measurement of the coefficient of thermal conductivity, volumetric capacity heat and thermal diffusivity. The findings values were compared with the results obtained in the tests of thermal performance, contributing to validation of the same. Ultimately, it was investigated the influence that changes in physical-chemical structure of the material had exerted on the variation of thermophysical quantities through gas pycnometry, scanning electron microscopy (SEM) combined with energy dispersive X-ray fluorescence spectroscopy (EDXRF), infrared spectroscopy using Fourier transform (FTIR), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Based on the results obtained was possible to demonstrate that all load percentage analyzed promoted an increase in the potential expansion (PE) of the resin. In production of the plates, the composites with density near at the free expansion presented high contraction during the cure, being the of higher density adopted as definitive standard. In the thermal performance tests, the heating and cooling curves of the different composites had presented symmetry and values very close for lines of the temperature. The results obtained for the thermophysical properties of composites, showed little difference in respect of pure foam. The percentage of open pores and irregularities in the morphology of the composites were proportionate to the increment of vermiculite. In the interaction between the matrix and dispersed phase, there were no chemical transformations in the region of interface and new compounds were not generated. The composites of PUR-NOP and vermiculite presented thermal insulating properties near the foam pure and percentage significantly less plastic in its composition, to the formulation with 10% of load
Resumo:
In the manufacture of composite, textile materials are being used as reinforcement. Generally, the combination of the matrix with the textile material in the form of fibres or yarns is used depending on their distribution in the web. In the present work, in place of fibres or yarns, a knitted structure in the form of the final product which is defined as preform. The preform is weft knit manufactured with polyester filaments. In the manufacture of composite, polyester resin was used as matrix. The physical and mechanical properties as well as the formability of the weft knit were analysed. The physical and mechanical properties as well as the formability of the knitted structure were analysed. The results obtained on the analysis show that the courses and wales of the weft knit structure and the tensile properties help the formability of the structure and the impregnation of the resin. It could be clearly observed that composite structure in the direction of the courses support more tension than in the direction of the wales. In relation to the three points flexural tests it was possible to note that there was more flexion in the direction of wales, what was expected. It was also possible to note that there are other advantages such as reduction in the loss of materials used, homogeneity in the distribution of the knitted structure in the mould, reduction in the preparation time and also in the reduction in the cost of manufacture
Resumo:
There are a number of damaging mechanisms that various materials can suffer in service. However, when working with polymer composite materials, this is something that requires analysis, especially when exposed to adverse environmental conditions. Thus, the objective of the present thesis is the study of the direct influence of environmental aging and the form of hybridization of the reinforcement woven on the structural stability, surfacedegradation and fracture process of polymer composites laminates. For this, the development of two polymer composite laminates was necessary, where one of them was reinforced with a bi-directional woven with hybrid strandsofkevlar-49/glass-Efibers, and the other also with a bi-directionalwoven, however with weft and warpformed of alternating strandsof Kevlar-49 fibers and glass-E fiber The reinforcementwoven are industrially manufactured. Both laminates use a polyester resin as a matrixand are made up of four layers each. All laminates were industrially prepared by the hand lay-up method of manufacturing. To do this, test specimens were manufactured of the respective laminates and submitted to environmental aging accelerated through the aging chamber. They were exposed to alternating cycles of UV radiation and moisture (heated steam) for a standard defined period. At the end of the exposure period the specimens were subjected to mechanical tests of uniaxial tensile and bending in three points and to the characterizationsof the fracture and surface deterioration. In addition, they were submitted to a structural degradation assessment by the measurement of mass variation technique (MMVT) and the measurement of thickness variation technique (MTVT), this last technique being developed in this thesis. At the end of the analysis it was observed that the form of hybridization of the reinforcement woven and the aging process directly influence with losses or gain in mechanical properties, with losses in the structural degradation and in the formation and propagation of damage mechanism of the developedcomposite laminates
Resumo:
The growing demand in the use of composite materials necessitates a better understanding its behavior to many conditions of loading and service, as well as under several ways of connections involved in mechanisms of structural projects. It is know that most of the structural elements are designed with presence of geometric discontinuities (holes, notches, etc) in their longitudinal sections and / or transversals, and that these discontinuities affect the mechanical response of these elements. This work has aims to analyze a study of the mechanical response, when in the presence geometric discontinuity, of polymer matrix composite laminates (orthophthalic polyester) to the uniaxial tensile test. The geometric discontinuity is characterized by the presence of a center hole in the transversal section of the composite. In this study, different kinds of stacking sequences are tested, with and without the presence of the hole, so as to provide better understanding of the mechanical properties. This sense, two laminates were studied: the first is only reinforced by with seven layers short mats of fiberglass-E (CM) and the second where the reinforcement of fiberglass-E comes in the form of bidirectional fabric (CT), with only four layers. The laminate CT has the presence of anisotropy (sense of continuous fibers with respect to the applied load) as the main parameter influencing its mechanical behavior, behavior this, not observed for the CM. In addition to the mechanical properties was also studied the fracture characteristics developed in each composite laminated. The results also showed that the presence of the hole in the transversal section decreased the ultimate strength of laminates and changed the final characteristic of fracture in all kinds of composite laminated studied
Resumo:
New materials made from industrial wastes have been studied as an alternative to traditional fabrication processes in building and civil engineering. These materials are produced considering some issues like: cost, efficiency and reduction of nvironmental damage. Specifically in cases of materials destined to dwellings in low latitude regions, like Brazilian Northeast, efficiency is related to mechanical and thermal resistance. Thus, when thermal insulation and energetic efficiency are aimed, it s important to increase thermal resistance without depletion of mechanical properties. This research was conducted on a construction element made of two plates of cement mortar, interspersed with a plate of recycled expanded polystyrene (EPS). This component, widely known as sandwich-panel, is commonly manufactured with commercial EPS whose substitution was proposed in this study. For this purpose it was applied a detailed methodology that defines parameters to a rational batching of the elements that constitute the nucleus. Samples of recycled EPS were made in two different values of apparent specific mass (ρ = 65 kg/m³; ρ = 130 kg/m³) and submitted to the Quick-Line 30TM that is a thermophysical properties analyzer. Based on the results of thermal conductivity, thermal capacity and thermal diffusivity obtained, it was possible to assure that recycled EPS has thermal insulation characteristics that qualify it to replace commercial EPS in building and civil engineering industry
Resumo:
In the industry of ceramic in Rio G. do Norte, tile stands out as the most manufactured product by this industry, being the intermittent kiln abóbada and caieira the principal type of kiln used in burning. There was a need to make a study of the influence exerted by the type of kiln in which tiles are burnt in their thermo physical properties. The analysis started with 24 raw samples of tile, which was split in two groups of 12 samples and burnt in Abóbada and Caieira kiln. Besides that, it was made study of the tax of heat transfer to the environment (for each kiln). After having been burnt the samples were taken for laboratory analysis. The properties verified were impermeability, determination of dry mass, absorption of water, the load of bending rupture and its geometric characteristics, the tests were conducted following the currents standards. The tests were carried out according to the ABNT - NBR 15310. The calculation of the rate of heat transfer showed that the abóbada kiln is more efficient than the Caieira, however the results of tests on the samples revealed no superiority of one over another sample. So the furnace had no influence on the performance of the ceramic tiles
Resumo:
In the State of Rio Grande do Norte potteries are distributed in several counties in the four meso, which are: West Potiguar, Center Potiguar, Agreste Potiguar and East Portiguar. The ceramics, mostly, are responsible for products used in construction as bricks, tiles and white brick and wood used as fuel. This paper had a primary focus in the region of Seridó. The furnaces in this region, used to manufacture bricks are configured Caieira and Valt, in most of them using principles rustic, usually operated in an empirical way, using principles of control rather primitive, predominantly visual control. The focus of this study was to analyze the differences in the thermophysical, mechanical and geometric characteristics of bricks produced by Caieira and vault furnaces, using the NBR 15720 and the evaluation of energy efficiency in both furnaces. Thermophysical characteristics were analyzed through tests to determine the water absorption obtained from the difference between dry mass and wet mass of the sample and analysis of the thermal gradient, the mechanical characteristics from determination of the compressive strength of ceramic brick popularly known as bricks and also analyzed the geometrical characteristics of the bricks in order to verify the homogeneity of manufacturing. The tests showed that the energy difference of the two furnaces is not considered responsible for a significant difference in the properties of the products
Resumo:
This research presents an approach to the addition of curauá fibers and licuri fibers in a polypropylene resin matrix, such as an alternative proposal to reinforce the polymeric composites. Fiber content of 0 %, 5 %, 10 %, and 20% were analyzed for verification of their mechanical properties comparing them, inclusive with the properties of polypropylene. The grainulated biocomposites had been prepared in an extrusora. The test bodies had been molded by injection and submitted to the mechanical essays uniaxial traction, flexion on three points, impact, in addition to thermal tests (HDT). These biocomposites had been also subjected the essay physicist-chemistry index of fluidity (IF). It was observed that the biocomposites of PP with 20% curauá, obtained bigger increase in the modulus of elasticity and a bigger reduction in the resistance to the impact. In the mechanical behavior, for all the biocomposites, these were increases in values of the limit of drainage and tension of rupture, when tested by uniaxial traction, as they added the fibers. Another important point was the increase of the resistance the flexion. It was also noted that the addition of fibers reduced the thermal degradation of the mixture natural fibers / polypropylene.
Resumo:
O objetivo deste trabalho foi avaliar o efeito de sistemas de rotação de culturas e de corretivos da acidez nas propriedades físicas do solo. O experimento foi realizado entre outubro de 2006 e julho de 2008, em Botucatu, SP, em blocos ao acaso, com parcelas subdivididas e oito repetições. As parcelas foram constituídas por quatro sistemas de rotação: soja/pousio/milho/pousio, soja/aveia-branca/milho/feijão, soja/milheto/milho/guandu e soja/braquiária/milho/braquiária. As subparcelas consistiram do tratamento testemunha, sem correção, e da aplicação de 3,8 Mg ha-1 de calcário dolomítico (PRNT = 90%) ou de 4,1 Mg ha-1 de silicato de cálcio e magnésio (PRNT = 80%), na superfície de um Latossolo Vermelho argiloso. Foram determinadas: estabilidade de agregados, densidade do solo, porosidade total, macro e microporosidade, resistência do solo à penetração e umidade do solo. A aplicação dos corretivos de acidez em superfície não reduz a agregação do solo e aumenta a macroporosidade até 0,20 m de profundidade, após aplicação de silicato, e até 0,10 m, após aplicação de calcário. A manutenção do solo em pousio, na entressafra, prejudica a estruturação do solo, reduz a estabilidade de agregados e aumenta a resistência à penetração nas camadas superficiais. A semeadura de braquiária, entre as safras de verão, aumenta a estabilidade de agregados até 0,10 m de profundidade.
Resumo:
The objective of this research is the fabrication of a composite reinforced with dyed sisal fiber and polyester matrix for application in the fields such as, fashion, clothing, interior textiles; fashion accessories are some of the examples. For the fabrication of the composite, the sisal fibers were subjected to processes such as: chemical treatment with sodium hydroxide (NaOH) in the removal of impurities; bleaching for removing the yellowish color of the natural fiber and dyeing with direct dyes to confer the colors blue, green and orange. The search for new technologies ecologically correct has become a major concern in recent decades. Studies show that composite polymer reinforced by natural fibers is suitable for a large number of applications, and its use is advantageous in terms of economic and ecological. The dyed fibers were cut to a length of 30 mm, is used in the confection of webs. For this purpose, a web preparer by immersion, developed in the Laboratory of Chemical Textile of UFRN. The composite sheets measuring 300 x 300 x3 mm were molded by compression, with unsaturated orthophthalic polyester as matrix, and the samples in sizes 150 x 25 x 3 mm were cut with the aid of a laser machine, to be subjected to traction and flexion. The mechanical properties of traction and flexion in three points were performed in the Laboratory of metal and mechanical tests of Materials Engineering of UFRN. The resulting samples from the tests were evaluated in scanning electron microscope (SEM) at CTGas RN. On the basis of the analysis of the results from the mechanical tests, it was observed that the composite had good mechanical behavior, both in traction as in flexion. Furthermore, it was observed that in the water absorption test, the samples had a different percentage among themselves, this occurred due to the variation of density found in the fibre webs. The images of the SEM showed the failures from the manufacturing process and the adhesion of fibre/matrix. When the samples were prepared with the dyed fibers to be applied in fashion, the results were positive, and it can be concluded that the main objective of this work was achieved
Resumo:
In the present work, three composites with distinct reinforcements (polyester, modal e polyester + modal), all if a unsaturated orthophthalic polyester resin as matrix were used, in order to conduct a comparative study by mechanical tests and water absorption. The fibre mats were prepared in a mat preparatory by immersion developed in the Textile Engineering Laboratory. The composites were manufactured using a closed mould process by compression using an unsaturated orthophthalic polyester resin as matrix and 1% MEK (methyl ethyl ketone peroxide) as an initiator. In each composite twelve samples with the dimensions of 150x25x3 mm were cut randomly for the mechanical analysis (tension x extension, three points bending and water absorption and Scanning Electron Micsroscopy). The mechanical tests were carried out in the Laboratório de Metais e Ensaios Mecânicos UFRN . All the analyses were carried out according to the ASTM norms. The resultant samples from the mechanical analysis were subjected for the Scanning Electron Microscopy analysis. Based on the results obtained, it was observed that the reinforced composite with two fibres (modal + polyester) presented better results in comparison to the other two composites both in the tension/extension as well on the three point bending tests. In the water absorption test, it was possible to observe an equilibrium in the water absorption by the modal and polyester composite, due to the union of the two fibres. In the SEM images, the regions of rupture in the composites as well as the adsorption between the fiber and the matrix could be observed