963 resultados para Colorimetry.
Resumo:
For Middle Jurassic to Pleistocene times, clay mineralogical and geochemical data provide information on the evolution of continental and marine paleoenvironments. They are a source of information on marginal instability, on the continental and shallow marine environments related to the development of the Southern Ocean during the Middle and Late Jurassic, and on tectonic relaxation of the continental margins at the end of the Late Jurassic. They also provide evidence for the influences of the South Atlantic opening and the movement of the Falkland Plateau in a reduced marine environment until Aptian-Albian times, and the transition to an open marine environment during Albian time; the influences of the Albian-Turonian and Coniacian-Santonian Andean deformations in an open marine environment; the limited tectonic effects and strong influence of marine currents at the Cretaceous/Tertiary boundary; the influences of the global climatic cooling and inferred bottom water circulation during the late Eocene and Oligocene; the widening of the South Atlantic Ocean during Oligocene time, which was accompanied by an increased influence of the biogenic components on sedimentation; increased carbonate dissolution from late Oligocene to early Miocene, related to the deepening of the ocean; limited mineralogical and important geochemical modifications when the Drake Passage opened in the early Miocene; the influence of the late Miocene development of the Antarctic ice-sheet; the major Antarctic cooling and Patagonian glaciation during Pliocene time; and the change in the Antarctic Bottom Water circulation at the Pliocene/Pleistocene boundary.
Resumo:
Seawater that has been altered by reaction with basaltic basement has been sampled from Deep Sea Drilling Project Hole 504B, located on 5.9-m.y.-old crust on the southern flank of the Costa Rica Rift. Fourteen water samples have been collected on Legs 69, 70, and 83, both before and after renewed drilling on the latter two legs, at temperatures from 69 to 133°C and pressures from 390 to 425 bars. The water sampled prior to renewed drilling on Leg 83 had occupied the hole for nearly 2 yr. since it was last flushed with surface seawater at the end of Leg 70. Despite some contamination by seawater during sampling, the composition of two of these waters has been determined by using nitrate as a tag for the contaminant. Both the 80 and 115°C waters have seawater chlorinity, but have lost considerable Mg, Na, K, sulfate, and 02, and have gained Ca, alkalinity, Si, NH3 and H2S. The loss of sulfate is due to anhydrite precipitation, as indicated by the d34S value of the remaining dissolved sulfate. The 87Sr/86Sr ratio has been lowered to 0.7086 for the 80°C water and 0.7078 for the 115°C water, whereas the Sr concentration is nearly unchanged. The changes in major element composition relative to seawater are also larger for the 115°C water, indicating that the basement formation water at this site probably varies in composition with depth. Based on their direction relative to seawater, the compositional changes for the 80 and 115°C waters do not complement the changes inferred for the altered rocks from Hole 504B, suggesting that the bulk composition of the altered rocks, like their mineralogy, is largely unrelated to the present thermal and alteration regime in the hole. The exact nature of the reacted seawaters cannot be determined yet, however. During its 2 yr. residence in the hole, the surface seawater remaining at the end of Leg 70 would have reacted with the wall rocks and exchanged with their interstitial formation waters by diffusion and possibly convection. How far these processes have proceeded is not yet certain, although calculations suggest that diffusion alone could have largely exchanged the surface seawater for interstitial water. The d18O of the samples is indistinguishable from seawater, however, and the d14C of the 80°C sample is similar to that of ocean bottom water. Although the interpretation of these species is ambiguous, that of tritium should not be. Tritium analyses, which are in progress, should clarify the nature of the reacted seawaters obtained from the hole.
Resumo:
Recent discoveries relating to the circulation of fluids within the oceanic crust include the finding of both important fluxes of elements and isotopes into the oceans by ridge-crest hydrothermal convection and important fluxes of heat out of the oceanic crust by convection at ridge crests and at some distance from ridge crests. In the present chapter, I present isotopic, chemical, and physical data from sediments and pore waters of Deep Sea Drilling Project (DSDP) Holes 503A and 503B. These results are modeled in terms of pore-water diffusion, advection, and production to ascertain the relative contribution of these processes at this location, 7.5 m.y. removed from ridge-crest hydrothermal activity. The observations made here contribute to the understanding of chemical and heat transport in oceanic crust of moderate age.
Resumo:
Heterocystous cyanobacteria of the genus Nodularia form extensive blooms in the Baltic Sea and contribute substantially to the total annual primary production. Moreover, they dispense a large fraction of new nitrogen to the ecosystem when inorganic nitrogen concentration in summer is low. Thus, it is of ecological importance to know how Nodularia will react to future environmental changes, in particular to increasing carbon dioxide (CO2) concentrations and what consequences there might arise for cycling of organic matter in the Baltic Sea. Here, we determined carbon (C) and dinitrogen (N2) fixation rates, growth, elemental stoichiometry of particulate organic matter and nitrogen turnover in batch cultures of the heterocystous cyanobacterium Nodularia spumigena under low (median 315 µatm), mid (median 353 µatm), and high (median 548 µatm) CO2 concentrations. Our results demonstrate an overall stimulating effect of rising pCO2 on C and N2 fixation, as well as on cell growth. An increase in pCO2 during incubation days 0 to 9 resulted in an elevation in growth rate by 84 ± 38% (low vs. high pCO2) and 40 ± 25% (mid vs. high pCO2), as well as in N2 fixation by 93 ± 35% and 38 ± 1%, respectively. C uptake rates showed high standard deviations within treatments and in between sampling days. Nevertheless, C fixation in the high pCO2 treatment was elevated compared to the other two treatments by 97% (high vs. low) and 44% (high vs. mid) at day 0 and day 3, but this effect diminished afterwards. Additionally, elevation in carbon to nitrogen and nitrogen to phosphorus ratios of the particulate biomass formed (POC : POP and PON : POP) was observed at high pCO2. Our findings suggest that rising pCO2 stimulates the growth of heterocystous diazotrophic cyanobacteria, in a similar way as reported for the non-heterocystous diazotroph Trichodesmium. Implications for biogeochemical cycling and food web dynamics, as well as ecological and socio-economical aspects in the Baltic Sea are discussed.
Resumo:
Clay mineralogical and inorganic geochemical data from the Campanian to the Pleistocene provide information bearing on the evolution of both continental and marine paleoenvironments in the Walvis Ridge area. (1) Alteration processes of basalts occurred under subaerial conditions during the Campanian and Maestrichtian and were virtually absent in deeper marine environments. (2) Strong tectonic effects were present during the Campanian and persisted until the early Eocene. (3) Subsidence of this part of the Walvis Ridge became important during the late Maestrichtian and continued into the Paleocene and Eocene. (4) The influence of global climatic cooling was evident from the late Eocene on. (5) Modification of oceanic circulation and the increasing influence of surface and deep water masses on the sedimentation characterized the Cenozoic.
Resumo:
Geological and geophysical data collected during Deep Sea Drilling Project (DSDP) Leg 70 indicate that hydrothermal solutions are upwelling through the sediments of the mounds hydrothermal field (Sites 506, 507, and 509) and downwelling in the low heat-flow zone to the south (Site 508). Pore-water data are compatible with these conclusions. Pore waters at mounds sites are enriched in Ca and depleted in Mg relative to both seawater and Site 508 pore waters. These anomalies are believed to reflect prior reaction of the interstitial waters with basement rocks. The mounds solutions are also enriched in iron, which is probably hydrothermal and en route to forming nontronite. Concentrations of Si and NH3 in mounds pore water increase upcore as a result of the addition of dissolving biogenic debris to ascending hydrothermal solutions. Some low heat-flow pore-water samples (Site 508) are enriched in Ca and depleted in Mg. These anomalies likely reflect the presence of pockets of hydrothermal solutions in areas otherwise dominated by downwelling bottom water.