980 resultados para Cold temperature


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms underlying the occurrence of temperature extremes in Iberia are analysed considering a Lagrangian perspective of the atmospheric flow, using 6-hourly ERA-Interim reanalysis data for the years 1979–2012. Daily 2-m minimum temperatures below the 1st percentile and 2-m maximum temperatures above the 99th percentile at each grid point over Iberia are selected separately for winter and summer. Four categories of extremes are analysed using 10-d backward trajectories initialized at the extreme temperature grid points close to the surface: winter cold (WCE) and warm extremes (WWE), and summer cold (SCE) and warm extremes (SWE). Air masses leading to temperature extremes are first transported from the North Atlantic towards Europe for all categories. While there is a clear relation to large-scale circulation patterns in winter, the Iberian thermal low is important in summer. Along the trajectories, air mass characteristics are significantly modified through adiabatic warming (air parcel descent), upper-air radiative cooling and near-surface warming (surface heat fluxes and radiation). High residence times over continental areas, such as over northern-central Europe for WCE and, to a lesser extent, over Iberia for SWE, significantly enhance these air mass modifications. Near-surface diabatic warming is particularly striking for SWE. WCE and SWE are responsible for the most extreme conditions in a given year. For WWE and SCE, strong temperature advection associated with important meridional air mass transports are the main driving mechanisms, accompanied by comparatively minor changes in the air mass properties. These results permit a better understanding of mechanisms leading to temperature extremes in Iberia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cold sector of a midlatitude storm is characterized by distinctive features such as strong surface heat fluxes, shallow convection, convective precipitation and synoptic subsidence. In order to evaluate the contribution of processes occurring in the cold sector to the mean climate, an appropriate indicator is needed. This study describes the systematic presence of negative potential vorticity (PV) behind the cold front of extratropical storms in winter. The origin of this negative PV is analyzed using ERA-Interim data, and PV tendencies averaged over the depth of the boundary layer are evaluated. It is found that negative PV is generated by diabatic processes in the cold sector and by Ekman pumping at the low centre, whereas positive PV is generated by Ekman advection of potential temperature in the warm sector. We suggest here that negative PV at low levels can be used to identify the cold sector. A PV-based indicator is applied to estimate the respective contributions of the cold sector and the remainder of the storm to upward motion and large-scale and convective precipitation. We compare the PV-based indicator with other distinctive features that could be used as markers of the cold sector and find that potential vorticity is the best criterion when taken alone and the best when combined with any other.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last years, phototherapy has becoming a promising tool to improve skeletal muscle recovery after exercise, however, it was not compared with other modalities commonly used with this aim. In the present study we compared the short-term effects of cold water immersion therapy (CWIT) and light emitting diode therapy (LEDT) with placebo LEDT on biochemical markers related to skeletal muscle recovery after high-intensity exercise. A randomized double-blind placebo-controlled crossover trial was performed with six male young futsal athletes. They were treated with CWIT (5A degrees C of temperature [SD +/- 1A degrees]), active LEDT (69 LEDs with wavelengths 660/850 nm, 10/30 mW of output power, 30 s of irradiation time per point, and 41.7 J of total energy irradiated per point, total of ten points irradiated) or an identical placebo LEDT 5 min after each of three Wingate cycle tests. Pre-exercise, post-exercise, and post-treatment measurements were taken of blood lactate levels, creatine kinase (CK) activity, and C-reactive protein (CRP) levels. There were no significant differences in the work performed during the three Wingate tests (p > 0.05). All biochemical parameters increased from baseline values (p < 0.05) after the three exercise tests, but only active LEDT decreased blood lactate levels (p = 0.0065) and CK activity (p = 0.0044) significantly after treatment. There were no significant differences in CRP values after treatments. We concluded that treating the leg muscles with LEDT 5 min after the Wingate cycle test seemed to inhibit the expected post-exercise increase in blood lactate levels and CK activity. This suggests that LEDT has better potential than 5 min of CWIT for improving short-term post-exercise recovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free-living bacteria must respond to a wide range of temperature changes, and have developed specific mechanisms to survive in extreme environments. In this work we describe a remarkable resistance of mesophilic bacterium Caulobacter crescentus to several cycles of freezing at -80 degrees C, which was able to grow at low temperatures. Exponentially growing cells and late stationary-phase cells presented higher freezing resistance at both -20 and -80 degrees C than early stationary-phase cells. Cryotolerance was observed when log-phase cultures grown at 30 degrees C were preincubated at 5, 15 or 20 degrees C before freezing at -20 degrees C. A transposon library was screened to identify mutants sensitive to freezing at -80 degrees C and three strains presenting < 10% survival were isolated. Identification of genes disrupted in each mutant showed that they encoded an AddA family DNA helicase, a DEAD/DEAH box RNA helicase and a putative RND (resistance, nodulation, cell division) efflux system component. These strains showed longer generation times than wild-type cells when growing at 15 degrees C, with the RNA helicase mutant presenting a severe growth defect. These analyses suggest that the singular intrinsic resistance to freezing of C. crescentus is in fact a consequence of several independent traits, especially the maintenance of a proper degree of supercoiling of nucleic acids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report the measurement of Rb(2) molecule formation rate constant due to a two body process in a magneto-optical trap as a function of the sample temperature. The ground state molecules are detected by two-photon ionization, through the intermediate a(3)Sigma(+)(u) -> 2(3)Pi(g) molecular band. Our results show that the Rb(2) molecules formed in the MOT could be due to a wave shape resonance, which enhances the molecule formation rate. This effect may be used to enhance the molecule production; and therefore it maybe important to future experiments involving production and trapping of cold ground state molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Commonly used in archaeological contexts, micromorphology did not see a parallel advance in the field of experimental archaeology. Drawing from early work conducted in the 1990`s on ethnohistoric sites in the Beagle Channel, we analyze a set of 25 thin sections taken from control features and experimental tests. The control features include animal pathways and environmental contexts (beach samples, forest litter, soils from the proximities of archaeological sites), while the experimental samples comprise anthropic structures, such as hearths, and valves of Mytilus edulis (the most important component of shell middens in the region) heated from 200 degrees C to 800 degrees C. Their micromorphological study constitutes a modern analogue to assist archaeologists studying site formation and ethnographical settings in cold climates, with particular emphasis on shell midden contexts. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the building sector accounting for around 40% of the total energy consumption in the EU, energy efficiency in buildings is and continues to be an important issue. Great progress has been made in reducing the energy consumption in new buildings, but the large stock of existing buildings with poor energy performance is probably an even more crucial area of focus. This thesis deals with energy efficiency measures that can be suitable for renovation of existing houses, particularly low-temperature heating systems and ventilation systems with heat recovery. The energy performance, environmental impact and costs are evaluated for a range of system combinations, for small and large houses with various heating demands and for different climates in Europe. The results were derived through simulation with energy calculation tools. Low-temperature heating and air heat recovery were both found to be promising with regard to increasing energy efficiency in European houses. These solutions proved particularly effective in Northern Europe as low-temperature heating and air heat recovery have a greater impact in cold climates and on houses with high heating demands. The performance of heat pumps, both with outdoor air and exhaust air, was seen to improve with low-temperature heating. The choice between an exhaust air heat pump and a ventilation system with heat recovery is likely to depend on case specific conditions, but both choices are more cost-effective and have a lower environmental impact than systems without heat recovery. The advantage of the heat pump is that it can be used all year round, given that it produces DHW. Economic and environmental aspects of energy efficiency measures do not always harmonize. On the one hand, lower costs can sometimes mean larger environmental impact; on the other hand there can be divergence between different environmental aspects. This makes it difficult to define financial subsidies to promote energy efficiency measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two experiments were conducted to clarify the roles of grain size, solute carbon and strain in determining the recrystallization textures of cold-rolled and annealed steels. In the first experiment, samples of coarse-grained low-carbon (LC) and interstitial-free (IF) steels were cold-rolled to a 75% reduction in thickness. One sample from each steel was polished and cold-rolled an additional 5%, while the remaining samples were annealed for various times at 650°C. In the second experiment, three samples from a commercial LC steel sheet were rolled 70% at 300°C. Two of the samples were given a further rolling reduction of 5% of the original thickness, with one of the samples being given this additional reduction at 300°C and the other at room temperature. Goss recrystallization textures are strengthened by coarse initial grain sizes, the presence of solute carbon and rolling at a temperature where dynamic strain ageing occurs, but are weakened by additional rolling beyond a reduction of 70%, especially when this extra rolling is conducted at a temperature where dynamic strain ageing does not occur. Characterization of key features of the deformed and recrystallized steels using optical microscopy, scanning electron microscopy (SEM) and electron back-scatter diffraction (EBSD) supports a rationale for these effects based on the repeated activation and deactivation of shear bands and the influence of solute carbon and dynamic strain ageing on the operating life of the bands and the accumulation of strain within them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis discusses an experimental technique for investigating electron temperature control by Rydberg atoms in ultra-cold plasmas. The objective we set ourselves was twofold. Firstly, we sought to gain an insight into the processes whereby the creation of Rydberg atoms within the plasma lengthens the lifetime of the plasma. To this end, we created the plasma using a Littman dye laser and subsequently, at a variable time delay, we excited neutral atoms in the plasma to specific Rydberg states using a narrow bandwidth pulsed dye laser. Secondly, we employed radio-frequency (rf) electric fields to excite electron oscillations within the plasma in order to infer such information as plasma density and electron temperature. Although we found that the introduction of high angular momentum Rydberg states did lengthen the plasma lifetime we were not able to differentiate between the temperature moderation effect due to the Rydberg atoms cooling the plasma, and the binding effect due to an increased positive space charge within the plasma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A free-running, temperature stabilized diode laser has been injection-locked to an external cavity diode laser for use in cold Rydberg atom experiments. Cold rubidium atoms in a magneto-optical trap (MOT) are excited to Rydberg states using a 10 ns laser pulse. The Rydberg atoms spontaneously ionize due to dipole forces, and the collisional ionization dynamics are observed as a function of atom density and principal quantum number of the Rydberg state, n. The injection-locked diode laser will be used as a repumper in conjunction with a dark spontaneous-force optical trap (SPOT) to increase the Rydberg state density. We report on the design of the injection-locked laser system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heat generated by the specific dynamic action (SDA) associated with feeding is known to substitute for the thermoregulatory costs of cold-exposed endotherms; however, the effectiveness of this depends on food  temperature. When food is cooler than core body temperature, it is warmed by body heat and, consequently, imposes a thermoregulatory challenge to the animal. The degree to which this cost might be `paid' by SDA depends on the relative timing of food heating and the SDA response. We investigated this phenomenon in two genera of endotherms, Diomedea and Thalassarche albatrosses, by measuring postprandial metabolic rate following ingestion of food at body temperature (40°C) and cooler (0 and 20°C). This permitted us to estimate potential contributions to food warming by SDA-derived heat, and to observe the effect of cold food on metabolic rate. For meal sizes that were ~20% of body mass, SDA was 4.22±0.37% of assimilated food energy, and potentially contributed 17.9±1.0% and 13.2±2.2% of the required heating energy of food at 0°C for Diomedea and Thalassarche albatrosses, respectively, and proportionately greater quantities at higher food temperatures. Cold food increased the rate at which postprandial metabolic rate increased to 3.2–4.5 times that associated with food ingested at body temperature. We also found that albatrosses generated heat in excess by more than 50% of the estimated thermostatic heating demand of cold food, a probable consequence of time delays in physiological responses to afferent signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of adiabatic shear localization in commercial titanium subjected to heavy cold rolling was investigated. The evolution of the morphology, microhardness, local shear strain, and local temperature increments were systematically studied and estimated. A shear band with about 25m in width was formed and fine nanograins with a range of dimensions varying from 20 to 160nm and had a mean size of about 70nm were observed inside the centre of shear band after 83% cold-rolling. Microhardness test shows that hardness within the shear band is markedly higher than that of the surrounding matrix. The calculated shear strain and maximum temperature increase within the shear band are much higher than that of the overall deformed sample. The initiation of shear localization may depend on geometric perturbation instead of thermal ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold start driving cycles exhibit an increase in friction losses due to the low temperatures of metal and media compared to normal operating engine conditions. These friction losses are responsible for up to 10% penalty in fuel economy over the official drive cycles like the New European Drive Cycle (NEDC), where the temperature of the oil even at the end of the 1180 s of the drive cycle is below the fully warmed up values of between 100°C and 120°C. At engine oil temperatures below 100°C the water from the blow by condensates and dilutes the engine oil in the oil pan which negatively affects engine wear. Therefore engine oil temperatures above 100°C are desirable to minimize engine wear through blow by condensate. The paper presents a new technique to warm up the engine oil that significantly reduces the friction losses and therefore also reduces the fuel economy penalty during a 22°C cold start NEDC. Chassis dynamometer experiments demonstrated fuel economy improvements of over 7% as well as significant emission reductions by rapidly increasing the oil temperature. Oil temperatures were increased by up to 60°C during certain parts of the NEDC. It is shown how a very simple sensitivity analysis can be used to assess the relative size or efficiency of different heat transfer passes and the resulting fuel economy improvement potential of different heat recovery systems system. Due to its simplicity the method is very fast to use and therefore also very cost effective. The method demonstrated a very good correlation for the fuel consumption within ±1% compared to measurements on a vehicle chassis roll.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work evaluated several aspects of the generalized stress response [endocrine (cortisol), metabolic (glucose), hematologic (hematocrit and hemoglobin) and cellular (HSP70)] in the Amazonian warm-water fish matrinxã (Brycon amazonicus ) subjected to an acute cold shock. This species farming has been done in South America, and growth and feed conversion rates have been interesting. However, in subtropical areas of Brazil, where the water temperature can rapidly change, high rates of matrinxã mortality have been associated with abrupt decrease in the water temperature. Thus, we subjected matrinxã to a sudden cold shock by transferring the fish directly to tanks in which the water temperature was 10oC below the initial conditions (cold shock from 28ºC to 18oC). After 1h the fish were returned to the original tanks (28ºC). The handling associated with tank transfer was also imposed on control groups (not exposed to cold shock). While exposure to cold shock did not alter the measured physiological conditions within 1h, fish returned to the ambient condition (water at 28º C) significantly increased plasma cortisol and glucose levels. Exposure to cold shock and return to the warm water did not affect HSP70 levels. The increased plasma cortisol and glucose levels after returning the fish to warm water suggest that matrinxã requires cortisol and glucose for adaptation to increased temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose
To examine the effects of four commonly used recovery treatments applied between two bouts of intense endurance cycling on the performance of the second bout in normothermia (~21 °C).

Methods
Nine trained men completed two submaximal exhaustive cycling bouts (Ex1 and Ex2: 5 min at ~50 % V˙O2 peak, followed by 5 min at ~60 % V˙O2 peak and then ~80 % V˙O2 peak to failure) separated by 30 min of (a) cold water immersion at 15 °C (C15), (b) contrast water therapy alternating 2.5 min at 8 °C and 2.5 min at 40 °C (CT), (c) thermoneutral water immersion at 34 °C (T34) and (d) cycling at ~40 % V˙O2 peak (AR).

Results
Exercise performance, cardiovascular and metabolic responses during Ex1 were similar among all trials. However, time to failure (~80 % V˙O2 peak bout) during Ex2 was significantly (P < 0.05) longer in C15 (18.0 ± 1.6) than in CT (14.5 ± 1.5), T34 (12.4 ± 1.4) and AR (10.6 ± 1.0); and it was also longer (P < 0.05) in CT than AR. Core temperature and heart rate were significantly (P < 0.05) lower during the initial ~15 min of Ex2 during C15 compared with all other conditions but they reached similar levels at the end of Ex2.

Conclusions
A 30 min period of C15 was more beneficial in maintaining intense submaximal cycling performance than CT, T34 and AR; and CT was also more beneficial than T34 and AR. These effects were not mediated by the effect of water immersion per se, but by the continuous (C15) or intermittent (CT) temperature stimulus (cold) applied throughout the recovery.