914 resultados para Clathrin-coated Vesicles
Resumo:
The oral administration is a common route in the drug therapy and the solid pharmaceutical forms are widely used. Although much about the performance of these formulations can be learned from in vitro studies using conventional methods, evaluation in vivo is essential in product development. The knowledge of the gastrointestinal transit and how the physiological variables can interfere with the disintegration and drug absorption is a prerequisite for development of dosage forms. The aim of this work was to employing the ac biosusceptometry (ACB) to monitoring magnetic tablets in the human gastrointestinal tract and to obtain the magnetic images of the disintegration process in the colonic region. The ac biosusceptometry showed accuracy in the quantification of the gastric residence time, the intestinal transit time and the disintegration time (DT) of the magnetic formulations in the human gastrointestinal tract. Moreover, ac biosusceptometry is a non-invasive technique, radiation-free and harmless to the volunteers, as well as an important research tool in the pharmaceutical, pharmacological and physiological investigations. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Purpose. To employ the AC Biosusceptometry (ACB) technique to evaluate in vitro and in vivo characteristics of enteric coated magnetic hydroxypropyl methylcellulose (HPMC) capsules and to image the disintegration process.Materials and Methods. HPMC capsules filled with ferrite (MnFe2O4) and coated with Eudragit (R) were evaluated using USP XXII method and administered to fasted volunteers. Single and multisensor ACB systems were used to characterize the gastrointestinal (GI) motility and to determine gastric residence time (GRT), small intestinal transit time (SITT) and orocaecal transit time (OCTT). Mean disintegration time (t (50)) was quantified from 50% increase of pixels in the imaging area.Results. In vitro and in vivo performance of the magnetic HPMC capsules as well as the disintegration process were monitored using ACB systems. The mean disintegration time (t (50)) calculated for in vitro was 25 +/- 5 min and for in vivo was 13 +/- 5 min. In vivo also were determined mean values for GRT (55 +/- 19 min), SITT (185 +/- 82 min) and OCTT (240 +/- 88 min).Conclusions. AC Biosusceptometry is a non-invasive technique originally proposed to monitoring pharmaceutical dosage forms orally administered and to image the disintegration process.
Resumo:
Nanostructured calcium phosphate (CaP) has been histologically and biomechanically proven to enhance osseointegration of implants; however, conventional techniques were not sufficiently sensitive to capture its biological effects fully. Here, we compared the conventional removal torque (RTQ) evaluation and gene expression in tissues around nanostructured CaP-coated implants, using real-time RT-PCR, with those of uncoated implants, in a rabbit model. At 2 wks, RTQ values were significantly higher, alkaline phosphatase (ALP) expression was significantly higher, and runt-related transcription factor 2 and tumor necrosis factor-alpha expressions were significantly lower in the coated than in the uncoated implants. This indicates that inflammatory responses were suppressed and osteoprogenitor activity increased around the CaP-coated surface. At 4 wks, although RTQ values did not significantly differ between the 2 groups, ALP and osteocalcin (OCN) were significantly up-regulated in the coated group, indicating progressive mineralization of the bone around the implant. Moreover, an osteoclast marker, adenosine triphosphatase, which indicates acidification of the resorption lacunae, was significantly higher for the coated implants, suggesting gradual resorption of the CaP coating. This study reveals detailed genetic responses to nanostructured CaP-coated implants and provides evidence that the effect of nanotopography is significant during the osseointegration cascade.
Resumo:
Nanostructures on implant surfaces have been shown to enhance osseointegration; however, commonly used evaluation techniques are probably not sufficiently sensitive to fully determine the effects of this process. This study aimed to observe the osseointegration properties of nanostructured calcium phosphate (CaP)-coated implants, by using a combination of three-dimensional imaging and conventional histology. Titanium implants were coated with stable CaP nanoparticles using an immersion technique followed by heat treatment. Uncoated implants were used as the control. After topographical and chemical characterizations, implants were inserted into the rabbit femur. After 2 and 4 weeks, the samples were retrieved for micro-computed tomography and histomorphometric evaluation. Scanning electron microscopy evaluation indicated that the implant surface was modified at the nanoscale by CaP to obtain surface textured with rod-shaped structures. Relative to the control, the bone-to-implant contact for the CaP-coated implant was significantly higher at 4 weeks after the implant surgery. Further, corresponding 3-D images showed active bone formation surrounding the implant. 3-D quantification and 2-D histology demonstrated statistical correlation; moreover, 3-D quantification indicated a statistical decrease in bone density in the non-coated control implant group between 2 and 4 weeks after the surgery. The application of 3-D evaluation further clarified the temporal characteristics and biological reaction of implants in bone. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
This study was performed in order to investigate the cholinomimetic response of seminal vesicles isolated from rats treated with hydrocortisone acetate during perinatal life. At the adult phase, the body weight and the wet weight of the seminal vesicle of these animals were unchanged. However, these male rats exhibited a significant reduction in plasma testosterone concentration. A significant increase in the sensitivity of the seminal vesicle to acetylcholine was also observed. Despite this, there was a significant reduction in the maximum contractile response of the organ to this transmitter. These results indicate that exposure to hydrocortisone during the critical period of brain sexual differentiation has a long-term effect on testosterone production of male rats. In addition, physiological levels of cortisone in perinatal life are also essential to support the contractile response pattern of the seminal vesicle to acetylcholine in adult life, probably crucial to the reproductive process. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Several different methods were used to investigate the vesicle-to-micelle transition induced by the addition of the nonionic surfactant octaethylene glycol n-dodecyl monoether (C12E8) to spontaneously formed vesicle dispersions of dioctadecyldimethylammonium bromide and chloride (DODAX, X = Cl- and Br-). Dynamic light scattering reveals that fast mode micelles are formed upon addition of C12E6. The micellar mode becomes progressively dominant as the C12E8/DODAX molar ratio (R) is increased until the vesicle-to-micelle transition is complete. Turbidity, calorimetry, fluorescence quantum yield, and anisotropy measurements indicate two critical compositions: the first, R-sat, when the vesicle bilayer is saturated with C12E8 and the second, R-sol, which corresponds to the complete vesicle-to-micelle transition. Below R-sat the vesicles swell due to incorporation of the surfactant into the vesicle bilayer, and above R-sat mixed micelles and bilayer structures coexist, the determined R-sat and R-sol range from 0 to 1 and 4 to 6, respectively, depending on the surfactant counterion and the experimental method used. Cryo-transmission electron microscopy micrographs show that when R approximate to 4, micelles coexist with extended bilayer fragments. In pure DODAX (1.0 mM) dispersions, unilamellar vesicles are observed. According to the DSC results, C12E8 lowers the gel-to-liquid crystalline transition temperature, T-m, of DODAX and broadens the main transition peak which disappears around R approximate to 5 and 6 for DODAC and DODAB, respectively.
Resumo:
Mixtures of dioctadecyldimethylammonium chloride (DODAC) cationic vesicle dispersions with aqueous micelle solutions of the anionic sodium cholate (NaC) were investigated by differential scanning calorimetry, DSC, turbidity and light scattering. Within the concentration range investigated (constant 1.0 mM DODAC and varying NaC concentration up to 4 mM), vesicle -> micelle -> aggregate transitions were observed. The turbidity of DODAC/NaC/water depends on time and NaC/DODAB molar concentration ratio R. At equilibrium, turbidity initially decreases smoothly with R to a low value (owing to the vesicle-micelle transition) when R = 0.5-0.8 and then increases steeply to a high value (owing to the micelle-aggregate transition) when R = 0.9-1.0. DSC thermograms exhibit a single and sharp endothermic peak at T-m approximate to 49 degrees C, characteristic of the melting temperature of neat DODAC vesicles in water. Upon addition of NaC, T-m initially decreases to vanish around R = 0.5, and the main transition peak broadens as R increases. For R > 1.0 two new (endo- and exothermic) peaks appear at lower temperatures indicating the formation of large aggregates since the dispersion is turbid. All samples are non-birefringent. Dynamic light scattering (DLS) data indicate that both DODAC and DODAC/NaC dispersions are highly polydisperse, and that the mean size of the aggregates tends to decrease as R increases. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The gel to liquid crystalline phase transition of the double-chained cationic dioctadecyldimethylammonium chloride and bromide (DODAX, X = Cl- or Br-) in aqueous vesicle dispersions prepared by non-sonication, sonication and extrusion has been investigated using high-sensitivity differential scanning calorimetry (DSC). The transition temperature (T-m) is a function of the preparation method, amphiphile concentration, vesicle curvature and nature of the counterion. DSC thermograms for DODAB and DODAC non-sonicated vesicle dispersions exhibit a single endothermic peak at T-m roughly independent of concentration up to 10 mM. Extrusion broadens the transition peak and shifts T-m downwards. Sonication, however, broadens slightly the transition peak and tends to shift T-m upwards suggesting that extrusion and sonication form vesicles with different characteristics. DODAC always exhibits higher T-m than DODAB irrespective of the preparation method. T-m changes as follows: T-m (sonicated) greater than or equal to T-m (non-sonicated) > T-m (extruded). Hysteresis of about 7 degrees C was observed for DODAB vesicle dispersions. (C) 2000 Elsevier B.V. Ireland Ltd. All rights reserved.
Resumo:
Differential scanning calorimetry (DSc) and dynamic light scattering (DLS) were used to obtain the gel to liquid-crystalline phase transition temperature (T-m) and the apparent hydrodynamic radius (R-h) of spontaneously formed cationic vesicles of dialkyldimethylammonium bromide salts (CnH2n+1)(2)(CH3)(2)N+center dot Br-, with varying chain lengths. The preparation of cationic vesicles from aqueous solution of these surfactants, for n = 12, 14, 16 and 18 (DDAB, DTDAB, DHDAB and DODAB, respectively), requires the knowledge of the surfactant gel to liquid-crystalline phase transition temperature, or melting temperature (T-m) since below this temperature these surfactants are poorly or not soluble in water. That series of cationic surfactants has been widely investigated as vesicle-forming surfactants, although C-12 and C-18, DDAB and DODAB are by far the most investigated from this series. The dependence of T-m of these surfactants on the number n of carbons in the surfactant tails is reported. The T-m obtained by DSC increases non-linearly with n, and the vesicle apparent radius R-h is about the same for DHDAB and DODAB, but much smaller for DDAB. (c) 2006 Elsevier B.V.. All rights reserved.
Resumo:
The effect of sonication on fluorescence probe solubilization in cationic vesicles of dioctadecyldimethylammonium bromide (DODAB) was investigated by steady-state fluorescence of pyrene (Py), trans-diphenylpolyenes-diphenylbutadiene (DPB), diphenylhexatriene (DPH), and their corresponding 4,4'-dialkyl derivatives 4B4A and 4H4A fluorescence probes. The data indicate that sonication affects the bilayer polarity, the melting temperature (T (m)), and the cooperativity of the melting process due to changes in vesicle morphology. The effect of temperature on the fluorescence intensity and yielding I broken vertical bar(f) and anisotropy < r > shows that the ionizable probes 4B4A and 4H4A are solubilized close to the vesicle interfaces, whereas the non-ionizable DPH and DPB are deeper in the bilayers. Py solubilization indicates that sonicated vesicles exhibit less densely packed bilayers.
Resumo:
Combined dynamic and static light scattering (DLS, SLS) and cryogenic transmission electron microscopy (cryo-TEM) were used to investigate extruded cationic vesicles of dioctadecyldimethylammonium chloride and bromide (DODAX, X being Cl- or Br-). In salt-free dispersions the mean hydrodynamic diameter, D-h, and the weight average molecular weight, M-w, are larger for DODAB than for DODAC vesicles, and both D-h and M-w increase with the diameter (phi) of the extrusion filter. NaCl (NaBr) decreases (increases) the DODAB (DODAC) vesicle size, reflecting the general trend of DODAB to assemble as larger vesicles than DODAC. The polydispersity index is lower than 0.25, indicating the dispersions are rather polydisperse. Cryo-TEM micrographs show that the smaller vesicles are spherical while the larger ones are oblong or faceted, and the vesicle samples are fairly polydisperse in size and morphology. They also indicate that the vesicle size increases with phi and DODAB assembles as larger vesicles than DODAC. Lens-shaped vesicles were observed in the extruded preparations. Both light scattering and cryo-TEM indicate that the vesicle size is larger or smaller than phi when phi is smaller or larger than the optimal phi* approximate to 200 nm. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The formation of spontaneous vesicles of dihexadecylphosphate (DHP) in a HEPES buffered solution at pH 7.4, the size, morphology and melting temperature, obtained by cryogenic transmission electron microscopy (cryo-TEM) and differential scanning calorimetry (DSC), are reported. The vesicles were formed by simply mixing a 5.0 mM lipid-solvent mixture at a temperature (75 degrees C) safely above the higher melting temperature T-m = 70.4 degrees C of DHP. The vesicle diameter ranges from 100 to 332 nm and their geometry is spherical, faceted or oblong. T-m increases from 66.8 to 70.4 as DHP concentration is raised from 0.6 to 5.0 mM. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)